当前位置:
X-MOL 学术
›
Hortic. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interference of skeleton photoperiod in circadian clock and photosynthetic efficiency of tea plant: in-depth analysis of mathematical model
Horticulture Research ( IF 7.6 ) Pub Date : 2024-08-05 , DOI: 10.1093/hr/uhae226 Zhi-Hang Hu 1, 2 , Ting Huang 3 , Nan Zhang 3 , Chen Chen 3 , Kai-Xin Yang 1, 2 , Meng-Zhen Sun 1, 2 , Ni Yang 1, 2 , Yi Cheng 1, 2 , Jian-Ping Tao 3 , Hui Liu 3 , Xing-Hui Li 1, 2 , Xuan Chen 1, 2 , Xiong You 4 , Ai-Sheng Xiong 3 , Jing Zhuang 1, 2
Horticulture Research ( IF 7.6 ) Pub Date : 2024-08-05 , DOI: 10.1093/hr/uhae226 Zhi-Hang Hu 1, 2 , Ting Huang 3 , Nan Zhang 3 , Chen Chen 3 , Kai-Xin Yang 1, 2 , Meng-Zhen Sun 1, 2 , Ni Yang 1, 2 , Yi Cheng 1, 2 , Jian-Ping Tao 3 , Hui Liu 3 , Xing-Hui Li 1, 2 , Xuan Chen 1, 2 , Xiong You 4 , Ai-Sheng Xiong 3 , Jing Zhuang 1, 2
Affiliation
The circadian system of plants is a complex physiological mechanism, a biological process in which plants can adjust themselves according to the day and night cycle. To understand the effects of different photoperiods on the biological clock of tea plants, we analyzed the expression levels of core clock genes (CCA1, PRR9, TOC1, ELF4) and photosynthesis-related genes (Lhcb, RbcS, atpA) under normal light (light/dark = 12 h/12 h, 12L12D) and took the cost function defined by cycle and phase errors as the basic model parameter. In the continuous light environment (24 h light, 24L), the peak activity and cycle of key genes that control the biological clock and photosynthesis were delayed by 1–2 h. Under a skeleton photoperiod (6L6D, 3L3D), the expression profiles of clock genes and photosynthesis-related genes in tea plants were changed and stomatal opening showed a circadian rhythm. These observations suggest that a skeleton photoperiod may have an effect on the circadian rhythm, photosynthetic efficiency and stomatal regulation of tea plants. Our study and model analyzed the components of circadian rhythms under different photoperiodic pathways, and also revealed the underlying mechanisms of circadian regulation of photosynthesis in tea plants.
中文翻译:
骨骼光周期对昼夜节律的干扰与茶树光合效率的深度分析——数学模型的深入分析
植物的昼夜节律系统是一个复杂的生理机制,是植物可以根据昼夜周期进行自我调整的生物过程。为了解不同光周期对茶树生物钟的影响,本文分析了常光 (亮/暗 = 12 h/12 h, 12L12D) 下核心时钟基因 (CCA1 、 PRR9 、 TOC1 、 ELF4) 和光合作用相关基因 (Lhcb 、 RbcS、 atpA) 的表达水平,并以周期和相位误差定义的成本函数作为基本模型参数。在连续光照环境(24 h 光照,24 L)中,控制生物钟和光合作用的关键基因的峰值活性和周期延迟了 1-2 h。在骨架光周期 (6L6D, 3L3D) 下,茶树时钟基因和光合作用相关基因的表达谱发生变化,气孔开放呈现昼夜节律。这些观察结果表明,骨骼光周期可能对茶树的昼夜节律、光合效率和气孔调节产生影响。我们的研究和模型分析了不同光周期途径下昼夜节律的成分,并揭示了茶树昼夜节律调节光合作用的潜在机制。
更新日期:2024-08-05
中文翻译:
骨骼光周期对昼夜节律的干扰与茶树光合效率的深度分析——数学模型的深入分析
植物的昼夜节律系统是一个复杂的生理机制,是植物可以根据昼夜周期进行自我调整的生物过程。为了解不同光周期对茶树生物钟的影响,本文分析了常光 (亮/暗 = 12 h/12 h, 12L12D) 下核心时钟基因 (CCA1 、 PRR9 、 TOC1 、 ELF4) 和光合作用相关基因 (Lhcb 、 RbcS、 atpA) 的表达水平,并以周期和相位误差定义的成本函数作为基本模型参数。在连续光照环境(24 h 光照,24 L)中,控制生物钟和光合作用的关键基因的峰值活性和周期延迟了 1-2 h。在骨架光周期 (6L6D, 3L3D) 下,茶树时钟基因和光合作用相关基因的表达谱发生变化,气孔开放呈现昼夜节律。这些观察结果表明,骨骼光周期可能对茶树的昼夜节律、光合效率和气孔调节产生影响。我们的研究和模型分析了不同光周期途径下昼夜节律的成分,并揭示了茶树昼夜节律调节光合作用的潜在机制。