当前位置:
X-MOL 学术
›
Phys. Rev. X
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tracking the Distance to Criticality in Systems with Unknown Noise
Physical Review X ( IF 11.6 ) Pub Date : 2024-08-08 , DOI: 10.1103/physrevx.14.031021
Brendan Harris 1 , Leonardo L. Gollo 2 , Ben D. Fulcher 1
Physical Review X ( IF 11.6 ) Pub Date : 2024-08-08 , DOI: 10.1103/physrevx.14.031021
Brendan Harris 1 , Leonardo L. Gollo 2 , Ben D. Fulcher 1
Affiliation
Many real-world systems undergo abrupt changes in dynamics as they move across critical points, often with dramatic and irreversible consequences. Much existing theory on identifying the time-series signatures of nearby critical points, such as increased signal variance and slower timescales, is derived from analytically tractable systems, typically considering the case of fixed, low-amplitude noise. However, real-world systems are often corrupted by unknown levels of noise that can distort these temporal signatures. Here we aim to develop noise-robust indicators of the distance to criticality (DTC) for systems affected by dynamical noise in two cases: when the noise amplitude is either fixed or is unknown and variable across recordings. We present a highly comparative approach to this problem that compares the ability of over 7000 candidate time-series features to track the DTC in the vicinity of a supercritical Hopf bifurcation. Our method recapitulates existing theory in the fixed-noise case, highlighting conventional time-series features that accurately track the DTC. But in the variable-noise setting, where these conventional indicators perform poorly, we highlight new types of high-performing time-series features and show that their success is accomplished by capturing the shape of the invariant density (which depends on both the DTC and the noise amplitude) relative to the spread of fast fluctuations (which depends on the noise amplitude). We introduce a new high-performing time-series statistic, the rescaled autodensity (RAD), that combines these two algorithmic components. We then use RAD to provide new evidence that brain regions higher in the visual hierarchy are positioned closer to criticality, supporting existing hypotheses about patterns of brain organization that are not detected using conventional metrics of the DTC. Our results demonstrate how large-scale algorithmic comparison can yield theoretical insights that can motivate new theory and interpretable algorithms for solving important real-world problems. Published by the American Physical Society 2024
中文翻译:
跟踪具有未知噪声的系统中的临界距离
许多现实世界的系统在穿过关键点时会发生动态的突然变化,通常会带来戏剧性和不可逆转的后果。许多关于识别附近临界点的时间序列特征(例如信号方差增加和时间尺度变慢)的现有理论都来自分析可处理的系统,通常考虑固定、低振幅噪声的情况。然而,现实世界的系统经常被未知级别的噪声破坏,这些噪声可能会扭曲这些时间特征。在这里,我们的目标是为在两种情况下受动态噪声影响的系统开发临界距离 (DTC) 的噪声鲁棒指标:当噪声幅度是固定的或未知的并且在整个记录中可变时。我们提出了一种高度比较的方法来解决这个问题,比较了 7000 多个候选时间序列特征跟踪超临界 Hopf 分叉附近 DTC 的能力。我们的方法概括了固定噪声情况下的现有理论,突出了准确跟踪 DTC 的常规时间序列特征。但是在可变噪声设置中,这些传统指标表现不佳,我们重点介绍了新型的高性能时间序列特征,并表明它们的成功是通过捕获相对于快速波动的扩散(取决于噪声幅度)的不变密度(取决于 DTC 和噪声幅度)的形状来实现的。我们引入了一种新的高性能时间序列统计数据,即重新调整的自动密度 (RAD),它结合了这两个算法组件。 然后,我们使用 RAD 提供新的证据,证明视觉层次结构中较高的大脑区域更接近临界点,支持了使用 DTC 的常规指标无法检测到的关于大脑组织模式的现有假设。我们的结果表明,大规模算法比较如何产生理论见解,从而激发新的理论和可解释的算法来解决重要的现实问题。美国物理学会 2024 年出版
更新日期:2024-08-08
中文翻译:
跟踪具有未知噪声的系统中的临界距离
许多现实世界的系统在穿过关键点时会发生动态的突然变化,通常会带来戏剧性和不可逆转的后果。许多关于识别附近临界点的时间序列特征(例如信号方差增加和时间尺度变慢)的现有理论都来自分析可处理的系统,通常考虑固定、低振幅噪声的情况。然而,现实世界的系统经常被未知级别的噪声破坏,这些噪声可能会扭曲这些时间特征。在这里,我们的目标是为在两种情况下受动态噪声影响的系统开发临界距离 (DTC) 的噪声鲁棒指标:当噪声幅度是固定的或未知的并且在整个记录中可变时。我们提出了一种高度比较的方法来解决这个问题,比较了 7000 多个候选时间序列特征跟踪超临界 Hopf 分叉附近 DTC 的能力。我们的方法概括了固定噪声情况下的现有理论,突出了准确跟踪 DTC 的常规时间序列特征。但是在可变噪声设置中,这些传统指标表现不佳,我们重点介绍了新型的高性能时间序列特征,并表明它们的成功是通过捕获相对于快速波动的扩散(取决于噪声幅度)的不变密度(取决于 DTC 和噪声幅度)的形状来实现的。我们引入了一种新的高性能时间序列统计数据,即重新调整的自动密度 (RAD),它结合了这两个算法组件。 然后,我们使用 RAD 提供新的证据,证明视觉层次结构中较高的大脑区域更接近临界点,支持了使用 DTC 的常规指标无法检测到的关于大脑组织模式的现有假设。我们的结果表明,大规模算法比较如何产生理论见解,从而激发新的理论和可解释的算法来解决重要的现实问题。美国物理学会 2024 年出版