当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Targeted design strategies for a highly activated carbon cloth cathode/anode to construct flexible and cuttable sodium Ion capacitors with an all-woven-structure
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-08 , DOI: 10.1039/d4ee02578d Ying-Ying Wang 1, 2 , Zhong-Yuan Wang 2 , Yu-Juan Xu 2 , Wei-Hua Chen 3 , Guo-Sheng Shao 1 , Bao-Hua Hou 1
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-08 , DOI: 10.1039/d4ee02578d Ying-Ying Wang 1, 2 , Zhong-Yuan Wang 2 , Yu-Juan Xu 2 , Wei-Hua Chen 3 , Guo-Sheng Shao 1 , Bao-Hua Hou 1
Affiliation
Carbon cloth (CC) is a promising flexible substrate to construct flexible electrodes. However, commercial CC suffers from high price, large dead weight/volume and poor electrochemical activity, severely affecting the energy/power density of energy storage devices. Herein, both a porous CC (PCC) cathode and hard carbon CC (HCC) anode are rationally designed and prepared via targeted strategies using scalable and renewable cotton cloth. The full microporous structure of PCC ensures a complete self-supporting structure, large specific surface area and high performance based on PF6−. The non-porous structure with localized graphitic nanodomains of HCC contributes efficient sodium storage comparable to that of a capacitor with better flexibility. Consequently, both the PCC cathode and HCC anode realize high reversible capacity, outstanding rate capability, and ultralong cycling life in the half/full cell of a sodium ion capacitor system. More significantly, a flexible all-cloth sodium ion capacitor is assembled using the PCC cathode, HCC anode and cotton cloth separator, which provides stable power output even under bending and cutting conditions owing to its all-woven-structure. In addition, the structural design strategy, structure–activity relationship, and charge/discharge mechanism of CC electrodes are studied in detail, providing a constructive view for developing low-cost CC-based electrodes with high energy storage activity.
中文翻译:
高活性碳布阴极/阳极的针对性设计策略,以构建具有全编织结构的柔性可切割钠离子电容器
碳布(CC)是一种很有前景的柔性基材,可用于构建柔性电极。然而,商业CC价格高、自重/体积大、电化学活性差,严重影响了储能装置的能量/功率密度。在此,多孔CC(PCC)阴极和硬碳CC(HCC)阳极都是使用可扩展和可再生的棉布通过有针对性的策略合理设计和制备的。 PCC的全微孔结构保证了基于PF 6 -的完整的自支撑结构、大的比表面积和高性能。 HCC 具有局部石墨纳米域的无孔结构可提供与电容器相当的高效钠存储,并具有更好的灵活性。因此,PCC阴极和HCC阳极在钠离子电容器系统的半/全电池中实现了高可逆容量、出色的倍率性能和超长循环寿命。更重要的是,柔性全布钠离子电容器由PCC阴极、HCC阳极和棉布隔膜组装而成,由于其全编织结构,即使在弯曲和切割条件下也能提供稳定的功率输出。此外,对CC电极的结构设计策略、构效关系和充放电机理进行了详细研究,为开发具有高储能活性的低成本CC电极提供了建设性的观点。
更新日期:2024-08-08
中文翻译:
高活性碳布阴极/阳极的针对性设计策略,以构建具有全编织结构的柔性可切割钠离子电容器
碳布(CC)是一种很有前景的柔性基材,可用于构建柔性电极。然而,商业CC价格高、自重/体积大、电化学活性差,严重影响了储能装置的能量/功率密度。在此,多孔CC(PCC)阴极和硬碳CC(HCC)阳极都是使用可扩展和可再生的棉布通过有针对性的策略合理设计和制备的。 PCC的全微孔结构保证了基于PF 6 -的完整的自支撑结构、大的比表面积和高性能。 HCC 具有局部石墨纳米域的无孔结构可提供与电容器相当的高效钠存储,并具有更好的灵活性。因此,PCC阴极和HCC阳极在钠离子电容器系统的半/全电池中实现了高可逆容量、出色的倍率性能和超长循环寿命。更重要的是,柔性全布钠离子电容器由PCC阴极、HCC阳极和棉布隔膜组装而成,由于其全编织结构,即使在弯曲和切割条件下也能提供稳定的功率输出。此外,对CC电极的结构设计策略、构效关系和充放电机理进行了详细研究,为开发具有高储能活性的低成本CC电极提供了建设性的观点。