当前位置:
X-MOL 学术
›
GISci. Remote Sens.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dynamic flood mapping by a normalized probabilistic classification method using satellite radar amplitude time series
GIScience & Remote Sensing ( IF 6.0 ) Pub Date : 2024-07-16 , DOI: 10.1080/15481603.2024.2380125 Liangyu Ta 1, 2, 3 , Chen Yu 1, 2, 4 , Zhenhong Li 1, 2, 4 , Xiaoning Hu 1, 2, 3 , Chuang Song 1, 2, 4 , Wubiao Huang 5 , Meiling Zhou 1, 2, 3
GIScience & Remote Sensing ( IF 6.0 ) Pub Date : 2024-07-16 , DOI: 10.1080/15481603.2024.2380125 Liangyu Ta 1, 2, 3 , Chen Yu 1, 2, 4 , Zhenhong Li 1, 2, 4 , Xiaoning Hu 1, 2, 3 , Chuang Song 1, 2, 4 , Wubiao Huang 5 , Meiling Zhou 1, 2, 3
Affiliation
Owing to the vast development of Synthetic Aperture Radar (SAR), especially the improvement of spatio-temporal resolution, observing and quantifying the complex and dynamic flood process becomes in...
中文翻译:
使用卫星雷达振幅时间序列通过归一化概率分类方法进行动态洪水测绘
由于合成孔径雷达(SAR)的巨大发展,特别是时空分辨率的提高,观测和量化复杂动态的洪水过程变得越来越重要。
更新日期:2024-07-16
中文翻译:
使用卫星雷达振幅时间序列通过归一化概率分类方法进行动态洪水测绘
由于合成孔径雷达(SAR)的巨大发展,特别是时空分辨率的提高,观测和量化复杂动态的洪水过程变得越来越重要。