当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface Regulation via an Organometallic Ferrocene-Based Molecule toward Inverted Perovskite Solar Cells
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-08-07 , DOI: 10.1021/acsenergylett.4c01433
Fei Wang 1, 2 , Taomiao Wang 2 , Chuangye Ge 2 , Yonggui Sun 2 , Xiaokang Sun 2 , Xiao Liang 1, 2 , Dawei Duan 2 , Qiannan Li 2 , Yongjun Li 2 , Fan Zhang 2 , Guo Yang 2 , Xianfang Zhou 1, 2 , Quanyao Zhu 1 , Haoran Lin 2 , Hu Chen 3, 4 , Tom Wu 5 , Hanlin Hu 2
Affiliation  

There is a significant challenge of charge recombination at the perovskite/electron transport layer (ETL), coupled with the need of optimized interface charge transfer in inverted perovskite solar cells (PSCs). In this work, an organometallic ferrocene-based molecule, ferrocenyl-bis-thieno[3,2-b]thiophene-2-carboxylate (FcTTPc), with inherent carboxylate and thiophene functionalities surrounding the central ferrocene motif, is meticulously designed and synthesized for the modification of the perovskite/ETL interface. The carboxylate and thiophene groups in the FcTTPc molecule interact strongly with perovskite components, effectively passivating interface defects. Furthermore, the thiophene group of FcTTPc can engage in robust π–π interactions with the ETL, thereby enhancing interface charge transport. Following the interface modification with FcTTPc, an improved alignment of energy levels is achieved, significantly optimizing carrier transport. Due to the interface modification via the FcTTPc molecule, the champion PSC achieves a PCE of 25.39%. The FcTTPc-modified devices maintained over 96% of their initial efficiency under 40% relative humidity conditions for 1500 h.

中文翻译:


通过有机金属二茂铁基分子对倒置钙钛矿太阳能电池进行界面调节



钙钛矿/电子传输层(ETL)的电荷复合面临重大挑战,而且需要优化倒置钙钛矿太阳能电池(PSC)中的界面电荷转移。在这项工作中,一种基于有机金属二茂铁的分子,二茂铁基双噻吩并[3,2- b ]噻吩-2-羧酸酯(FcTTPc),在中心二茂铁基序周围具有固有的羧酸酯和噻吩官能团,经过精心设计和合成,用于钙钛矿/ETL界面的修改。 FcTTPc分子中的羧酸根和噻吩基团与钙钛矿成分发生强烈相互作用,有效钝化界面缺陷。此外,FcTTPc 的噻吩基团可以与 ETL 发生强大的 π-π 相互作用,从而增强界面电荷传输。使用 FcTTPc 进行界面修饰后,能级的排列得到改善,从而显着优化了载流子传输。由于通过 FcTTPc 分子进行界面修饰,冠军 PSC 的 PCE 达到 25.39%。 FcTTPc 修饰的器件在 40% 相对湿度条件下 1500 小时内保持了 96% 以上的初始效率。
更新日期:2024-08-07
down
wechat
bug