Sports Medicine ( IF 9.3 ) Pub Date : 2024-08-07 , DOI: 10.1007/s40279-024-02084-3 Daniel A Keir 1, 2, 3 , Silvia Pogliaghi 1, 4 , Erin Calaine Inglis 4 , Juan M Murias 5 , Danilo Iannetta 6
At a point during the latter third of an incremental exercise protocol, ventilation begins to exceed the rate of clearance of carbon dioxide (CO2) at the lungs (\({\dot{V}}\)CO2). The onset of this hyperventilation, which is confirmed by a fall from a period of stability in end-tidal and arterial CO2 tensions (PCO2), is referred to as the respiratory compensation point (RCP). The mechanisms that contribute to the RCP remain debated as does its surrogacy for the maximal metabolic steady state of constant-power exercise (i.e., the highest work rate associated with maintenance of physiological steady state). The objective of this current opinion is to summarize the original research contributions that support and refute the hypotheses that: (i) the RCP represents a rapid, peripheral chemoreceptor-mediated reflex response engaged when the metabolic rate at which the buffering systems can no longer constrain the rise in hydrogen ions ([H+]) associated with rising lactate concentration and metabolic CO2 production is surpassed; and (ii) the metabolic rate at which this occurs is equivalent to the maximal metabolic steady state of constant power exercise. In doing so, we will shed light on potential mechanisms contributing to the RCP, attempt to reconcile disparate findings, make a case for its adoption for exercise intensity stratification and propose strategies for the use of RCP in aerobic exercise prescription.
中文翻译:
呼吸补偿点:机制和与最大代谢稳态的关系
在增量运动方案的后三分之一的某个时间点,通气量开始超过肺部二氧化碳 (CO2) 的清除率 (\({\dot{V}}\)CO 2)。这种过度换气的开始,通过从呼气末和动脉 CO2 张力 (PCO2) 的稳定期下降来证实,被称为呼吸补偿点 (RCP)。导致 RCP 的机制及其对恒定功率运动的最大代谢稳态(即与维持生理稳态相关的最高工作速率)的替代性仍然存在争议。当前观点的目的是总结支持和反驳以下假设的原始研究贡献:(i) 当缓冲系统的代谢率不再限制与乳酸浓度升高和代谢 CO 2 相关的氢离子 ([H+]) 的上升时,RCP 代表一种快速的、外周化学感受器介导的反射反应产量被超越;(ii) 发生这种情况的代谢率相当于恒定功率运动的最大代谢稳态。在此过程中,我们将阐明有助于 RCP 的潜在机制,尝试调和不同的发现,为其用于运动强度分层提供理由,并提出在有氧运动处方中使用 RCP 的策略。