当前位置:
X-MOL 学术
›
Chem. Soc. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Insights from Li and Zn systems for advancing Mg and Ca metal batteries
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-08-06 , DOI: 10.1039/d4cs00557k Jinyoung Kim 1 , Minkwan Kim 1 , Jimin Lee 1 , Jiwoo An 1 , Seonmo Yang 1 , Hyo Chul Ahn 1 , Dong-Joo Yoo 2 , Jang Wook Choi 1
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-08-06 , DOI: 10.1039/d4cs00557k Jinyoung Kim 1 , Minkwan Kim 1 , Jimin Lee 1 , Jiwoo An 1 , Seonmo Yang 1 , Hyo Chul Ahn 1 , Dong-Joo Yoo 2 , Jang Wook Choi 1
Affiliation
The inherent limitations of lithium (Li)-ion batteries have sparked interest in exploring alternative technologies, especially those relying on metallic anodes: monovalent Li and divalent zinc (Zn), magnesium (Mg), and calcium (Ca) metals. In particular, Mg and Ca metal batteries offer significant advantages based on the natural abundance of their raw materials and high energy-storage capabilities resulting from the bivalency of the carrier ions. Yet, these battery systems are far from commercialization, and the lack of reliable electrolytes constitutes a primary concern. The formation of ion-insulating passivation layers on these metallic anodes and their inferior desolvation kinetics have long been recognized as formidable hurdles in the way of optimizing the electrolyte composition. These impediments call for innovative strategies in electrolyte engineering and an extensive analysis of the resulting solid–electrolyte–interphase (SEI) layer. In this review, we introduce recent pioneering studies of divalent Mg and Ca metal batteries that have been concerned with these issues. This review particularly focuses on drawing an analogy with Li and Zn metal batteries in terms of the relative advancement and by benchmarking against the strategies developed for these analogous systems. The areas of interest include a fundamental understanding of the thermodynamics and evolution of the morphology of metallic anodes, a correlation between the electrolyte and SEI compositions, state-of-the-art electrolyte strategies to realize reversible (de)plating of Mg and Ca, and new perspectives on the SEI properties and their relevance to corrosion and the calendar life. We finally encourage researchers in the community to delve into these emerging areas by linking with successful stories in the analogous systems, but identifying distinct aspects of Mg and Ca batteries that still require attention.
中文翻译:
锂和锌系统对推进镁和钙金属电池的见解
锂 (Li) 离子电池的固有局限性引发了人们对探索替代技术的兴趣,特别是那些依赖金属阳极的技术:一价锂和二价锌 (Zn)、镁 (Mg) 和钙 (Ca) 金属。特别是,镁和钙金属电池由于其原材料的天然丰富性和载体离子的二价性而具有高能量存储能力,因此具有显着的优势。然而,这些电池系统距离商业化还很远,缺乏可靠的电解质是主要问题。这些金属阳极上离子绝缘钝化层的形成及其较差的去溶剂化动力学长期以来一直被认为是优化电解质成分的巨大障碍。这些障碍需要电解质工程的创新策略以及对由此产生的固体电解质界面(SEI)层的广泛分析。在这篇综述中,我们介绍了最近关注这些问题的二价镁和钙金属电池的开创性研究。本综述特别侧重于在相对进步方面与锂和锌金属电池进行类比,并针对为这些类似系统开发的策略进行基准测试。感兴趣的领域包括对热力学和金属阳极形态演变的基本了解、电解质和 SEI 成分之间的相关性、实现 Mg 和 Ca 的可逆(脱)镀的最先进的电解质策略,以及关于 SEI 特性及其与腐蚀和日历寿命的相关性的新观点。 最后,我们鼓励社区研究人员通过与类似系统中的成功案例联系起来,深入研究这些新兴领域,但确定镁和钙电池仍需要关注的不同方面。
更新日期:2024-08-07
中文翻译:
锂和锌系统对推进镁和钙金属电池的见解
锂 (Li) 离子电池的固有局限性引发了人们对探索替代技术的兴趣,特别是那些依赖金属阳极的技术:一价锂和二价锌 (Zn)、镁 (Mg) 和钙 (Ca) 金属。特别是,镁和钙金属电池由于其原材料的天然丰富性和载体离子的二价性而具有高能量存储能力,因此具有显着的优势。然而,这些电池系统距离商业化还很远,缺乏可靠的电解质是主要问题。这些金属阳极上离子绝缘钝化层的形成及其较差的去溶剂化动力学长期以来一直被认为是优化电解质成分的巨大障碍。这些障碍需要电解质工程的创新策略以及对由此产生的固体电解质界面(SEI)层的广泛分析。在这篇综述中,我们介绍了最近关注这些问题的二价镁和钙金属电池的开创性研究。本综述特别侧重于在相对进步方面与锂和锌金属电池进行类比,并针对为这些类似系统开发的策略进行基准测试。感兴趣的领域包括对热力学和金属阳极形态演变的基本了解、电解质和 SEI 成分之间的相关性、实现 Mg 和 Ca 的可逆(脱)镀的最先进的电解质策略,以及关于 SEI 特性及其与腐蚀和日历寿命的相关性的新观点。 最后,我们鼓励社区研究人员通过与类似系统中的成功案例联系起来,深入研究这些新兴领域,但确定镁和钙电池仍需要关注的不同方面。