当前位置: X-MOL 学术Catal. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural tuning of BiVO4/MnFe-MOF photoanodes boosts hole extraction for photoelectrochemical water splitting
Catalysis Science & Technology ( IF 4.4 ) Pub Date : 2024-08-06 , DOI: 10.1039/d4cy00836g
Chenchen Feng 1 , Longyue Liu 1 , Houyu Fu 1 , Faqi Zhan 1 , Henan Jia 1 , Xiang Cheng 2 , Fucheng Yu 1 , Qi Zhou 1 , Zongkun Bian 1 , Beibei Zhang 3
Affiliation  

To achieve extremely effective photoelectrochemical (PEC) water splitting, it is imperative to suppress charge recombination at the interfaces between the oxygen evolution cocatalyst (OEC) and BiVO4. In view of this, a robust interfacial interaction between BiVO4 and MnFe-MOF was successfully established, and the optimized BiVO4/MnFe-MOF photoanode exhibits a photocurrent density of 3.64 mA cm−2 at 1.23 V versus the reversible hydrogen electrode (RHE) under AM 1.5 G illumination (100 mW cm−2). Owing to the robust metal–support interaction (SMSI) between BiVO4 and MnFe-MOF, the electron transfer from Bi/V to MnFe-MOF leads to the formation of Bi/V–O–Mn/Fe chemical bonds and electron-rich Fe species (Fe2+), which readily provide an extra driving force for the extraction of the photogenerated holes from BiVO4 to MnFe-MOF. Furthermore, the introduction of Mn atoms regulates the electronic structure of Fe sites in MnFe-MOF, thus accelerating the kinetics of surface water oxidation. This work sheds light on the function of the interface and active site electronic structure modulation of photoelectrodes for sustainable solar energy conversion.

中文翻译:


BiVO4/MnFe-MOF光阳极的结构调整促进光电化学水分解的空穴提取



为了实现极其有效的光电化学(PEC)水分解,必须抑制析氧助催化剂(OEC)和BiVO 4之间界面处的电荷复合。鉴于此,BiVO 4和MnFe-MOF之间成功建立了强大的界面相互作用,并且优化的BiVO 4 /MnFe-MOF光阳极与可逆氢电极(RHE)相比,在1.23 V下表现出3.64 mA cm -2的光电流密度。 )在 AM 1.5 G 照明(100 mW cm -2 )下。由于 BiVO 4和 MnFe-MOF 之间强大的金属-载体相互作用(SMSI),电子从 Bi/V 转移到 MnFe-MOF 导致形成 Bi/V-O-Mn/Fe 化学键和富电子Fe物种(Fe 2+ ),它很容易为光生空穴从BiVO 4提取到MnFe-MOF提供额外的驱动力。此外,Mn原子的引入调节了MnFe-MOF中Fe位点的电子结构,从而加速了表面水氧化的动力学。这项工作揭示了光电极界面和活性位点电子结构调制在可持续太阳能转换中的功能。
更新日期:2024-08-06
down
wechat
bug