当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells
Chemical Reviews ( IF 51.4 ) Pub Date : 2024-08-06 , DOI: 10.1021/acs.chemrev.4c00105
Mikkel Bregnhøj 1 , Frederik Thorning 1 , Peter R Ogilby 1
Affiliation  

Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth’s atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2–• charge-transfer state in both the formation and deactivation of O2(a1Δg).

中文翻译:


单线态氧光物理学:从液体溶剂到哺乳动物细胞



分子氧(O 2 )长期以来一直为化学、物理和生物学研究提供基石。尽管三重态基态 O 2 (X 3 Σ g ) 引起了广泛关注,但最低激发电子态 O 2 (a 1 Δ g )(通常称为单线态氧)引起了人们的极大兴趣,主要是因为它的从地球大气层到生物细胞的系统中具有独特的化学反应性。由于 O 2 (a 1 Δ g ) 可以在涉及光的过程中产生和失活,因此 O 2 (a 1 Δ g ) 的光物理学同样重要。此外,O 2 (a 1 Δ g ) 失活再生 O 2 (X 3 Σ g ) 的途径本身就解决了基本原理,在动力学上与 O 2 (a 1 Δ g ) 的化学反应竞争,因此,具有实际意义。由于技术进步(例如激光、光学探测器、显微镜),过去~20年获得的数据明显增加了我们对 O 2 (a 1 Δ g ) 光物理学的理解,并促进了对 O 行为的空间和时间控制。 2 (a 1 Δ g )。本综述的一个目标是总结具有广泛影响的最新进展,重点关注氧与有机分子 M(例如液体溶剂)形成接触络合物的系统。 一个重要的概念是M O 2 –·电荷转移态在O 2 (a 1 Δ g ) 的形成和失活中所起的作用。
更新日期:2024-08-06
down
wechat
bug