Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-08-05 , DOI: 10.1007/s13540-024-00320-1 Mohsen Timoumi
Consider the following fractional Hamiltonian system:
$$\begin{aligned} \left\{ \begin{array}{l} _{t}D_{\infty }^{\alpha }(_{-\infty }D_{t}^{\alpha }u)(t)+L(t)u(t)=\nabla W(t,u(t)),\ t\in \mathbb {R}\\ u\in H^{\alpha }(\mathbb {R}). \end{array}\right. \end{aligned}$$Here, \(_{t}D_{\infty }^{\alpha }\) and \(_{-\infty }D_{t}^{\alpha }\) represent the Liouville-Weyl fractional derivatives of order \(\frac{1}{2}< \alpha < 1\), \(L \in C(\mathbb {R}, \mathbb {R}^{N^2})\) is a symmetric matrix, and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^N, \mathbb {R})\). By applying the Fountain Theorem and the Dual Fountain Theorem, we demonstrate that this system admits two distinct sequences of solutions under the condition that L meets a new non-coercive criterion, and the potential W(t, x) exhibits combined nonlinearities.
中文翻译:
具有组合非线性且无强制条件的分数哈密顿系统的多重解
考虑以下分数哈密顿系统:
$$\begin{对齐} \left\{ \begin{array}{l} _{t}D_{\infty }^{\alpha }(_{-\infty }D_{t}^{\alpha }u )(t)+L(t)u(t)=\nabla W(t,u(t)),\ t\in \mathbb {R}\\ u\in H^{\alpha }(\mathbb { R})。 \end{数组}\对。 \end{对齐}$$
这里, \(_{t}D_{\infty }^{\alpha }\)和\(_{-\infty }D_{t}^{\alpha }\)表示阶数为\的Liouville-Weyl分数导数(\frac{1}{2}< \alpha < 1\) , \(L \in C(\mathbb {R}, \mathbb {R}^{N^2})\)是对称矩阵,和\(W \in C^{1}(\mathbb {R} \times \mathbb {R}^N, \mathbb {R})\) 。通过应用喷泉定理和对偶喷泉定理,我们证明了该系统在L满足新的非强制准则且势W ( t , x ) 表现出组合非线性的条件下允许两个不同的解序列。