当前位置:
X-MOL 学术
›
Rev. Mod. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultimate Rayleigh-Bénard turbulence
Reviews of Modern Physics ( IF 45.9 ) Pub Date : 2024-08-06 , DOI: 10.1103/revmodphys.96.035001 Detlef Lohse 1, 2 , Olga Shishkina 2
Reviews of Modern Physics ( IF 45.9 ) Pub Date : 2024-08-06 , DOI: 10.1103/revmodphys.96.035001 Detlef Lohse 1, 2 , Olga Shishkina 2
Affiliation
Thermally driven turbulent flows are omnipresent in nature and technology. A good understanding of the physical principles governing such flows is key for numerous problems in oceanography, climatology, geophysics, and astrophysics for problems involving energy conversion, heating and cooling of buildings and rooms, and process technology. In the physics community, the most popular system to study wall-bounded thermally driven turbulence has been Rayleigh-Bénard flow, i.e., the flow in a box heated from below and cooled from above. The dimensionless control parameters are the Rayleigh number Ra (the dimensionless heating strength), the Prandtl number Pr (the ratio of kinematic viscosity to thermal diffusivity), and the aspect ratio Γ of the container. The key response parameters are the Nusselt number Nu (the dimensionless heat flux from the bottom to the top) and the Reynolds number Re (the dimensionless strength of the turbulent flow). While there is good agreement and understanding of the dependences N u ( R a , P r , Γ ) up to R a ∼ 1 0 1 1 (the “classical regime”), for even larger Ra in the so-called ultimate regime of Rayleigh-Bénard convection the experimental results and their interpretations are more diverse. The transition of the flow to this ultimate regime, which is characterized by strongly enhanced heat transfer, is due to the transition of laminar-type flow in the boundary layers to turbulent-type flow. Understanding this transition is of the utmost importance for extrapolating the heat transfer to large or strongly thermally driven systems. Here the theoretical results on this transition to the ultimate regime are reviewed and an attempt is made to reconcile the various experimental and numerical results. The transition toward the ultimate regime is interpreted as a non-normal–nonlinear and thus subcritical transition. Experimental and numerical strategies are suggested that can help to further illuminate the transition to the ultimate regime and the ultimate regime itself, for which a modified model for the scaling laws in its various subregimes is proposed. Similar transitions in related wall-bounded turbulent flows such as turbulent convection with centrifugal buoyancy and Taylor-Couette turbulence are also discussed.
中文翻译:
终极 Rayleigh-Bénard 湍流
热驱动湍流在自然界和技术中无处不在。充分理解控制此类流动的物理原理是海洋学、气候学、地球物理学和天体物理学中涉及能源转换、建筑物和房间加热和冷却以及工艺技术等问题的关键。在物理学界,研究壁面热驱动湍流的最流行的系统是瑞利-贝纳德流,即从下方加热并从上方冷却的盒子中的流动。无量纲控制参数是瑞利数 Ra(无量纲加热强度)、普朗特数 Pr(运动粘度与热扩散率的比值)和容器的纵横比Γ 。关键的响应参数是努塞尔数 Nu(从底部到顶部的无量纲热通量)和雷诺数 Re(湍流的无量纲强度)。虽然对 Nu(Ra,Pr,Γ) 到 Ra∼1011 (“经典机制”)的依赖性有很好的一致性和理解,但在所谓的瑞利-贝纳德对流的终极机制中,对于更大的 Ra,实验结果及其解释更加多样化。流动向这种极限状态的转变,其特征是传热强烈增强,是由于边界层中的层流转变为湍流。了解这种转变对于推断大型或强热驱动系统的传热至关重要。 这里回顾了这种向最终制度过渡的理论结果,并试图调和各种实验和数值结果。向终极状态的转变被解释为非正态-非线性,因此是亚临界转变。提出了有助于进一步阐明向终极制度和终极制度本身的过渡的实验和数值策略,为此提出了一种针对其各个子制度中的缩放定律的改进模型。还讨论了相关的壁面湍流中的类似转变,例如具有离心浮力的湍流对流和 Taylor-Couette 湍流。
更新日期:2024-08-06
中文翻译:
终极 Rayleigh-Bénard 湍流
热驱动湍流在自然界和技术中无处不在。充分理解控制此类流动的物理原理是海洋学、气候学、地球物理学和天体物理学中涉及能源转换、建筑物和房间加热和冷却以及工艺技术等问题的关键。在物理学界,研究壁面热驱动湍流的最流行的系统是瑞利-贝纳德流,即从下方加热并从上方冷却的盒子中的流动。无量纲控制参数是瑞利数 Ra(无量纲加热强度)、普朗特数 Pr(运动粘度与热扩散率的比值)和容器的纵横比