当前位置:
X-MOL 学术
›
Quantum Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Distributing circuits over heterogeneous, modular quantum computing network architectures
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-06 , DOI: 10.1088/2058-9565/ad6734 Pablo Andres-Martinez , Timothy Forrer , Daniel Mills , Junyi Wu , Luciana Henaut , Kentaro Yamamoto , Mio Murao , Ross Duncan
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-06 , DOI: 10.1088/2058-9565/ad6734 Pablo Andres-Martinez , Timothy Forrer , Daniel Mills , Junyi Wu , Luciana Henaut , Kentaro Yamamoto , Mio Murao , Ross Duncan
We consider a heterogeneous network of quantum computing modules, sparsely connected via Bell states. Operations across these connections constitute a computational bottleneck and they are likely to add more noise to the computation than operations performed within a module. We introduce several techniques for transforming a given quantum circuit into one implementable on such a network, minimising the number of Bell states required to do so. We extend previous works on circuit distribution to the case of heterogeneous networks. On the one hand, we extend the hypergraph approach of Andres-Martinez and Heunen (2019 Phys. Rev. A 100 032308) to arbitrary network topologies, and we propose the use of Steiner trees to detect and reuse common connections, further reducing the cost of entanglement sharing within the network. On the other hand, we extend the embedding techniques of Wu et al (2023 Quantum
7 1196) to networks with more than two modules. We show that, with careful manipulation of trade-offs, these two new approaches can be combined into a single automated framework. Our proposal is implemented and benchmarked; the results confirm that our contributions make noticeable improvements upon the aforementioned works and complement their weaknesses.
中文翻译:
在异构、模块化量子计算网络架构上分配电路
我们考虑量子计算模块的异构网络,通过贝尔态稀疏连接。跨这些连接的操作构成了计算瓶颈,并且与模块内执行的操作相比,它们可能会给计算添加更多的噪声。我们介绍了几种技术,用于将给定的量子电路转换为可在此类网络上实现的电路,从而最大限度地减少所需的贝尔态数量。我们将先前关于电路分布的工作扩展到异构网络的情况。一方面,我们扩展了 Andres-Martinez 和 Heunen 的超图方法(2019物理。牧师。一个100 032308)到任意网络拓扑,我们建议使用斯坦纳树来检测和重用公共连接,进一步降低网络内纠缠共享的成本。另一方面,我们扩展了 Wu 的嵌入技术等人(2023量子7 1196)到具有两个以上模块的网络。我们表明,通过仔细权衡,这两种新方法可以组合成一个自动化框架。我们的建议得到实施和基准测试;结果证实我们的贡献对上述工作做出了显着的改进并弥补了它们的弱点。
更新日期:2024-08-06
中文翻译:
在异构、模块化量子计算网络架构上分配电路
我们考虑量子计算模块的异构网络,通过贝尔态稀疏连接。跨这些连接的操作构成了计算瓶颈,并且与模块内执行的操作相比,它们可能会给计算添加更多的噪声。我们介绍了几种技术,用于将给定的量子电路转换为可在此类网络上实现的电路,从而最大限度地减少所需的贝尔态数量。我们将先前关于电路分布的工作扩展到异构网络的情况。一方面,我们扩展了 Andres-Martinez 和 Heunen 的超图方法(2019物理。牧师。一个100 032308)到任意网络拓扑,我们建议使用斯坦纳树来检测和重用公共连接,进一步降低网络内纠缠共享的成本。另一方面,我们扩展了 Wu 的嵌入技术等人(2023量子7 1196)到具有两个以上模块的网络。我们表明,通过仔细权衡,这两种新方法可以组合成一个自动化框架。我们的建议得到实施和基准测试;结果证实我们的贡献对上述工作做出了显着的改进并弥补了它们的弱点。