当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Air-stable lithium-sandwiched current collector for non-destructive, thermally safe, and sustained supplementary lithiation
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-06 , DOI: 10.1039/d4ee02522a Can Zhang , Xinlong Chen , Wang Wan , Ganxiong Liu , Quan Nie , Fangzhou Yang , Xueyang Li , Sa Li , Yunhui Huang , Chao Wang
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-06 , DOI: 10.1039/d4ee02522a Can Zhang , Xinlong Chen , Wang Wan , Ganxiong Liu , Quan Nie , Fangzhou Yang , Xueyang Li , Sa Li , Yunhui Huang , Chao Wang
Contact prelithiation for anodes is a promising strategy to compensate for active lithium loss due to solid-state interface formation. However, existing research has predominantly focused on lithium thinning, neglecting issues of low lithium utilization and side reactions associated with lithium purification. Residues on the electrode surface can provoke additional side reactions, exacerbating cycling instability. Moreover, the thermal effects during contact prelithiation raise significant safety concerns for practical applications and remain understudied. To address surface issues, the lithium inventory was repositioned beneath the electrode using a lithiable current collector, sandwiching LiAg foil between two Cu foils (CLC). A 16 μm-thick CLC embedded with 5 μm LiAg was fabricated through a rolling process, while Cu foils underwent deformation, creating microholes during the thinning process. These microholes facilitate the sustained release of Li+ from CLC, thus mitigating Li plating without additional anode materials. The gradual release of Li+ also suppresses thermal runaway and electrode deformation, especially for Si anodes. Moreover, the CLC demonstrates excellent air stability, making it suitable as a current collector. The continuous electron pathway in CLC ensures a high lithium utilization of 97%. When integrated into LFP||Gr full cells, CLC enhances capacity retention from 80% to 96% after 400 cycles.
中文翻译:
空气稳定的锂夹层集电器,可实现无损、热安全和持续补充锂化
阳极的接触预锂化是一种很有前途的策略,可以补偿由于固态界面形成而导致的活性锂损失。然而,现有的研究主要集中在锂的稀释上,忽视了锂利用率低和与锂纯化相关的副反应的问题。电极表面的残留物会引发额外的副反应,加剧循环不稳定。此外,接触预锂化过程中的热效应引起了实际应用的重大安全问题,并且仍然没有得到充分研究。为了解决表面问题,使用可锂集电器将锂库存重新定位在电极下方,将锂银箔夹在两个铜箔 (CLC) 之间。通过滚压工艺制造了嵌入 5 μm LiAg 的 16 μm 厚的 CLC,而铜箔在减薄过程中发生变形,产生微孔。这些微孔有利于Li +从CLC中持续释放,从而在无需额外阳极材料的情况下减轻Li沉积。 Li +的逐渐释放也抑制了热失控和电极变形,特别是对于硅负极。此外,CLC 表现出优异的空气稳定性,使其适合用作集流体。 CLC 中的连续电子路径确保了 97% 的高锂利用率。当集成到 LFP||Gr 全电池中时,CLC 在 400 次循环后将容量保持率从 80% 提高到 96%。
更新日期:2024-08-06
中文翻译:
空气稳定的锂夹层集电器,可实现无损、热安全和持续补充锂化
阳极的接触预锂化是一种很有前途的策略,可以补偿由于固态界面形成而导致的活性锂损失。然而,现有的研究主要集中在锂的稀释上,忽视了锂利用率低和与锂纯化相关的副反应的问题。电极表面的残留物会引发额外的副反应,加剧循环不稳定。此外,接触预锂化过程中的热效应引起了实际应用的重大安全问题,并且仍然没有得到充分研究。为了解决表面问题,使用可锂集电器将锂库存重新定位在电极下方,将锂银箔夹在两个铜箔 (CLC) 之间。通过滚压工艺制造了嵌入 5 μm LiAg 的 16 μm 厚的 CLC,而铜箔在减薄过程中发生变形,产生微孔。这些微孔有利于Li +从CLC中持续释放,从而在无需额外阳极材料的情况下减轻Li沉积。 Li +的逐渐释放也抑制了热失控和电极变形,特别是对于硅负极。此外,CLC 表现出优异的空气稳定性,使其适合用作集流体。 CLC 中的连续电子路径确保了 97% 的高锂利用率。当集成到 LFP||Gr 全电池中时,CLC 在 400 次循环后将容量保持率从 80% 提高到 96%。