当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tailoring the Wadsley–Roth crystallographic shear structures for high-power lithium-ion batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-06 , DOI: 10.1039/d4ee02293a Panpan Jing, Mengting Liu, Hsin-Pei Ho, Yifan Ma, Weibo Hua, Haohui Li, Nan Guo, Yong Ding, Weilin Zhang, Hailong Chen, Bote Zhao, Jenghan Wang, Meilin Liu
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-06 , DOI: 10.1039/d4ee02293a Panpan Jing, Mengting Liu, Hsin-Pei Ho, Yifan Ma, Weibo Hua, Haohui Li, Nan Guo, Yong Ding, Weilin Zhang, Hailong Chen, Bote Zhao, Jenghan Wang, Meilin Liu
Exploring a universal strategy to increase Li-ion storage capacity and ionic conductivity while maintaining a robust crystal framework is a significant challenge for advancing Wadsley–Roth shear phases as promising anodes for high-power lithium-ion batteries. Here we report a potent cation-engineering driven crystallographic shear structure tailoring strategy, demonstrated through a novel titanium niobium tungsten oxide (TNWO). This is a significant model containing inspiring domains with tetrahedron, tetrahedron-free and large-size blocks in the lattice. Theoretical calculations reveal that the TNWO model, featuring the partial absence of a [WO4] tetrahedron and intrinsic multiple cation features, not only exhibits enhanced electronic conductivity and alleviated Li+ adsorbed structural distortion, but also facilitates both horizontal inter-block type and vertical-tunnel type Li+ diffusions, accompanied by sufficient redox reactions. Accordingly, it offers 1.48 Li+ per metal atom along with a high Li+ diffusion coefficient of 10−12 cm−2 s−1 and remarkable structural stability, featuring a reversible spatial phase transition. Additionally, through modification of surface anisotropy, dimensional uniformity and electronic conductivity of individual TNWO particles, a composite anode demonstrates ultrahigh rate capability (103.7 mA h g−1 at 15 A g−1) and excellent cycling stability (capacity retention of 80% at 5 A g−1 over 4900 cycles). This work is believed to have opened a new avenue for tailoring shear structures and creating unprecedented phases to transcend the existing Wadsley–Roth niobium-based oxide system for next-generation high-power lithium-ion batteries.
中文翻译:
定制高功率锂离子电池的沃兹利-罗斯晶体剪切结构
探索一种通用策略来提高锂离子存储容量和离子电导率,同时保持坚固的晶体框架,是推进沃兹利-罗斯剪切相作为高功率锂离子电池有前景的阳极的重大挑战。在这里,我们报告了一种有效的阳离子工程驱动的晶体剪切结构定制策略,通过新型钛铌钨氧化物(TNWO)进行了证明。这是一个重要的模型,包含晶格中具有四面体、无四面体和大尺寸块的启发域。理论计算表明,TNWO模型由于部分缺乏[WO 4 ]四面体和固有的多重阳离子特征,不仅表现出增强的电子电导率和减轻Li +吸附的结构畸变,而且有利于水平嵌段型和垂直嵌段型。 -隧道型Li +扩散,伴随着充分的氧化还原反应。因此,它提供每个金属原子1.48 Li +以及10 -12 cm -2 s -1的高Li +扩散系数和显着的结构稳定性,具有可逆的空间相变。此外,通过改变单个 TNWO 颗粒的表面各向异性、尺寸均匀性和电子电导率,复合阳极表现出超高倍率性能 (103.15 A g -1时为 7 mA hg -1 )和出色的循环稳定性(4900 次循环后,5 A g -1时容量保持率为 80%)。这项工作被认为为定制剪切结构和创造前所未有的相开辟了一条新途径,以超越下一代高功率锂离子电池现有的沃兹利-罗斯铌基氧化物系统。
更新日期:2024-08-06
中文翻译:
定制高功率锂离子电池的沃兹利-罗斯晶体剪切结构
探索一种通用策略来提高锂离子存储容量和离子电导率,同时保持坚固的晶体框架,是推进沃兹利-罗斯剪切相作为高功率锂离子电池有前景的阳极的重大挑战。在这里,我们报告了一种有效的阳离子工程驱动的晶体剪切结构定制策略,通过新型钛铌钨氧化物(TNWO)进行了证明。这是一个重要的模型,包含晶格中具有四面体、无四面体和大尺寸块的启发域。理论计算表明,TNWO模型由于部分缺乏[WO 4 ]四面体和固有的多重阳离子特征,不仅表现出增强的电子电导率和减轻Li +吸附的结构畸变,而且有利于水平嵌段型和垂直嵌段型。 -隧道型Li +扩散,伴随着充分的氧化还原反应。因此,它提供每个金属原子1.48 Li +以及10 -12 cm -2 s -1的高Li +扩散系数和显着的结构稳定性,具有可逆的空间相变。此外,通过改变单个 TNWO 颗粒的表面各向异性、尺寸均匀性和电子电导率,复合阳极表现出超高倍率性能 (103.15 A g -1时为 7 mA hg -1 )和出色的循环稳定性(4900 次循环后,5 A g -1时容量保持率为 80%)。这项工作被认为为定制剪切结构和创造前所未有的相开辟了一条新途径,以超越下一代高功率锂离子电池现有的沃兹利-罗斯铌基氧化物系统。