当前位置: X-MOL 学术Soil › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Closing the phenotyping gap with non-invasive belowground field phenotyping
Soil ( IF 5.8 ) Pub Date : 2024-08-05 , DOI: 10.5194/egusphere-2024-2082
Guillaume Blanchy , Waldo Deroo , Tom De Swaef , Peter Lootens , Paul Quataert , Isabel Roldán-Ruíz , Sarah Garré

Abstract. Breeding climate-robust crops is one of the needed pathways for adaptation to the changing climate. To speed up the breeding process, it is important to understand how plants react to extreme weather events such as drought or waterlogging in their production environment, i.e. under field conditions in real soils. Whereas a number of techniques exist for above-ground field phenotyping, simultaneous non-invasive belowground phenotyping remains difficult. In this paper, we present the first dataset of the new HYDRAS open access field phenotyping infrastructure, bringing electrical resistivity tomography, alongside drone imagery and environmental monitoring, to a technology readiness level closer to what breeders and researchers need. This paper investigates whether electrical resistivity tomography (ERT) provides sufficient precision and accuracy to distinguish between belowground plant traits of different genotypes of the same crop species. The proof-of-concept experiment was conducted in 2023 with three distinct soybean genotypes known for their contrasting reactions to drought stress. We illustrate how this new infrastructure addresses the issues of depth resolution, automated data processing, and phenotyping indicator extraction. The work shows that electrical resistivity tomography is ready to complement drone-based field phenotyping techniques to accomplish whole plant high-throughput field phenotyping.

中文翻译:


通过非侵入性地下现场表型分析缩小表型分析差距



摘要。培育耐气候作物是适应气候变化所需的途径之一。为了加快育种过程,了解植物在其生产环境中(即在真实土壤的田间条件下)如何应对极端天气事件(例如干旱或涝灾)非常重要。尽管存在许多用于地上现场表型分析的技术,但同时进行非侵入性地下表型分析仍然很困难。在本文中,我们提出了新的 HYDRAS 开放获取现场表型基础设施的第一个数据集,将电阻率断层扫描与无人机图像和环境监测一起提高到更接近育种者和研究人员所需的技术准备水平。本文研究电阻率断层扫描(ERT)是否提供足够的精度和准确度来区分同一作物品种不同基因型的地下植物性状。这项概念验证实验于 2023 年进行,使用了三种不同的大豆基因型,这三种基因型因其对干旱胁迫的不同反应而闻名。我们说明了这个新的基础设施如何解决深度分辨率、自动化数据处理和表型指标提取的问题。这项工作表明,电阻率断层扫描已准备好补充基于无人机的现场表型技术,以完成全植物高通量现场表型分析。
更新日期:2024-08-05
down
wechat
bug