当前位置: X-MOL 学术Trends Cogn. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The causal structure and computational value of narratives
Trends in Cognitive Sciences ( IF 16.7 ) Pub Date : 2024-05-10 , DOI: 10.1016/j.tics.2024.04.003
Janice Chen 1 , Aaron M Bornstein 2
Affiliation  

Many human behavioral and brain imaging studies have used narratively structured stimuli (e.g., written, audio, or audiovisual stories) to better emulate real-world experience in the laboratory. However, narratives are a special class of real-world experience, largely defined by their causal connections across time. Much contemporary neuroscience research does not consider this key property. We review behavioral and neuroscientific work that speaks to how causal structure shapes comprehension of and memory for narratives. We further draw connections between this work and reinforcement learning, highlighting how narratives help link causes to outcomes in complex environments. By incorporating the plausibility of causal connections between classes of actions and outcomes, reinforcement learning models may become more ecologically valid, while simultaneously elucidating the value of narratives.

中文翻译:


叙事的因果结构和计算价值



许多人类行为和大脑成像研究都使用叙事结构的刺激(例如书面、音频或视听故事)来更好地模拟实验室中的真实经验。然而,叙事是一类特殊的现实世界体验,很大程度上是由它们跨时间的因果关系来定义的。许多当代神经科学研究并未考虑这一关键特性。我们回顾了行为和神经科学的工作,这些工作讲述了因果结构如何塑造对叙事的理解和记忆。我们进一步在这项工作和强化学习之间建立联系,强调叙事如何帮助在复杂环境中将原因与结果联系起来。通过纳入行动类别和结果之间因果关系的合理性,强化学习模型可能变得更加生态有效,同时阐明叙述的价值。
更新日期:2024-05-10
down
wechat
bug