当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microfluidic mass transfer of supercritical CO2 in brine
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-07-26 , DOI: 10.1016/j.ces.2024.120543
Junyi Yang , Peichun Amy Tsai

In the context of carbon sequestration in saline aquifers, we investigate transport dynamics in brine under reservoir-like conditions ( = 8 MPa, = 50C) using microfluidics. We quantify the mass transfer of supercritical in brine across a range of concentrations (0–1 M) and liquid flow rates (15–60 μL/min) for the first time. We find the volumetric mass transfer coefficient ranges from 50.3 to 144.0 s, increasing with flow rate and, to a lesser extent, with salinity. More importantly, the value for supercritical in brine at a higher temperature shows a significant enhancement of >50% compared to gas and liquid in water. Our analysis, incorporating a theoretical mass transfer model, points to a dominant contribution from the liquid film to the overall , nearly doubling that of the emulsion caps, attributed to the thin film's larger surface area and dynamic renewal.

中文翻译:


盐水中超临界CO2的微流体传质



在咸水含水层碳封存的背景下,我们使用微流体研究了类似水库条件(= 8 MPa,= 50C)下盐水的输运动力学。我们首次量化了盐水中超临界在不同浓度 (0–1 M) 和液体流速 (15–60 μL/min) 范围内的传质。我们发现体积传质系数范围从 50.3 到 144.0 s,随着流速的增加而增加,并且在较小程度上随着盐度的增加而增加。更重要的是,与水中的气体和液体相比,较高温度下盐水中的超临界值显示出> 50%的显着增强。我们的分析结合了理论传质模型,指出液膜对整体的主要贡献几乎是乳液帽的两倍,这归因于薄膜较大的表面积和动态更新。
更新日期:2024-07-26
down
wechat
bug