当前位置:
X-MOL 学术
›
Crit. Care
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Phenotyping COVID-19 respiratory failure in spontaneously breathing patients with AI on lung CT-scan
Critical Care ( IF 8.8 ) Pub Date : 2024-08-05 , DOI: 10.1186/s13054-024-05046-3 Emanuele Rezoagli 1, 2 , Yi Xin 3, 4 , Davide Signori 1 , Wenli Sun 5 , Sarah Gerard 6 , Kevin L Delucchi 7 , Aurora Magliocca 8, 9 , Giovanni Vitale 8 , Matteo Giacomini 8 , Linda Mussoni 10 , Jonathan Montomoli 11 , Matteo Subert 12 , Alessandra Ponti 13 , Savino Spadaro 14, 15 , Giancarla Poli 16 , Francesco Casola 17, 18 , Jacob Herrmann 6 , Giuseppe Foti 1, 2 , Carolyn S Calfee 19, 20 , John Laffey 21, 22 , Giacomo Bellani 23, 24 , Maurizio Cereda 3, 4 ,
Critical Care ( IF 8.8 ) Pub Date : 2024-08-05 , DOI: 10.1186/s13054-024-05046-3 Emanuele Rezoagli 1, 2 , Yi Xin 3, 4 , Davide Signori 1 , Wenli Sun 5 , Sarah Gerard 6 , Kevin L Delucchi 7 , Aurora Magliocca 8, 9 , Giovanni Vitale 8 , Matteo Giacomini 8 , Linda Mussoni 10 , Jonathan Montomoli 11 , Matteo Subert 12 , Alessandra Ponti 13 , Savino Spadaro 14, 15 , Giancarla Poli 16 , Francesco Casola 17, 18 , Jacob Herrmann 6 , Giuseppe Foti 1, 2 , Carolyn S Calfee 19, 20 , John Laffey 21, 22 , Giacomo Bellani 23, 24 , Maurizio Cereda 3, 4 ,
Affiliation
Automated analysis of lung computed tomography (CT) scans may help characterize subphenotypes of acute respiratory illness. We integrated lung CT features measured via deep learning with clinical and laboratory data in spontaneously breathing subjects to enhance the identification of COVID-19 subphenotypes. This is a multicenter observational cohort study in spontaneously breathing patients with COVID-19 respiratory failure exposed to early lung CT within 7 days of admission. We explored lung CT images using deep learning approaches to quantitative and qualitative analyses; latent class analysis (LCA) by using clinical, laboratory and lung CT variables; regional differences between subphenotypes following 3D spatial trajectories. Complete datasets were available in 559 patients. LCA identified two subphenotypes (subphenotype 1 and 2). As compared with subphenotype 2 (n = 403), subphenotype 1 patients (n = 156) were older, had higher inflammatory biomarkers, and were more hypoxemic. Lungs in subphenotype 1 had a higher density gravitational gradient with a greater proportion of consolidated lungs as compared with subphenotype 2. In contrast, subphenotype 2 had a higher density submantellar–hilar gradient with a greater proportion of ground glass opacities as compared with subphenotype 1. Subphenotype 1 showed higher prevalence of comorbidities associated with endothelial dysfunction and higher 90-day mortality than subphenotype 2, even after adjustment for clinically meaningful variables. Integrating lung-CT data in a LCA allowed us to identify two subphenotypes of COVID-19, with different clinical trajectories. These exploratory findings suggest a role of automated imaging characterization guided by machine learning in subphenotyping patients with respiratory failure. Trial registration: ClinicalTrials.gov Identifier: NCT04395482. Registration date: 19/05/2020.
中文翻译:
肺部 CT 扫描 AI 自主呼吸患者 COVID-19 呼吸衰竭的表型
肺部计算机断层扫描 (CT) 扫描的自动分析可能有助于表征急性呼吸系统疾病的亚表型。我们将通过深度学习测量的肺部 CT 特征与自主呼吸受试者的临床和实验室数据相结合,以增强对 COVID-19 亚表型的识别。这是一项多中心观察队列研究,对象为在入院后 7 天内暴露于早期肺部 CT 的自主呼吸 COVID-19 呼吸衰竭患者。我们使用深度学习方法对肺部 CT 图像进行定量和定性分析;使用临床、实验室和肺部 CT 变量进行潜在类别分析 (LCA);遵循 3D 空间轨迹的亚表型之间的区域差异。在 559 名患者中提供了完整的数据集。LCA 确定了两种亚表型 (亚表型 1 和 2)。与亚表型 2 (n = 403) 相比,亚表型 1 患者 (n = 156) 年龄较大,炎症生物标志物较高,并且低氧血症更严重。与亚表 2 相比,亚表 1 中的肺具有更高密度的重力梯度,肺实结的比例更大。相比之下,亚表 2 具有更高密度的下下颌-肺门梯度,与亚表 1 相比,磨玻璃影的比例更大。亚表型 1 显示与内皮功能障碍相关的合并症患病率高于亚表型 2,90 天死亡率高于亚表型 2,即使在调整了具有临床意义的变量后也是如此。将肺部 CT 数据整合到 LCA 中使我们能够识别具有不同临床轨迹的 COVID-19 的两种亚表型。这些探索性发现表明,由机器学习指导的自动成像表征在呼吸衰竭患者的亚表型中的作用。 试用注册:ClinicalTrials.gov 标识符:NCT04395482。注册日期:19/05/2020。
更新日期:2024-08-05
中文翻译:
肺部 CT 扫描 AI 自主呼吸患者 COVID-19 呼吸衰竭的表型
肺部计算机断层扫描 (CT) 扫描的自动分析可能有助于表征急性呼吸系统疾病的亚表型。我们将通过深度学习测量的肺部 CT 特征与自主呼吸受试者的临床和实验室数据相结合,以增强对 COVID-19 亚表型的识别。这是一项多中心观察队列研究,对象为在入院后 7 天内暴露于早期肺部 CT 的自主呼吸 COVID-19 呼吸衰竭患者。我们使用深度学习方法对肺部 CT 图像进行定量和定性分析;使用临床、实验室和肺部 CT 变量进行潜在类别分析 (LCA);遵循 3D 空间轨迹的亚表型之间的区域差异。在 559 名患者中提供了完整的数据集。LCA 确定了两种亚表型 (亚表型 1 和 2)。与亚表型 2 (n = 403) 相比,亚表型 1 患者 (n = 156) 年龄较大,炎症生物标志物较高,并且低氧血症更严重。与亚表 2 相比,亚表 1 中的肺具有更高密度的重力梯度,肺实结的比例更大。相比之下,亚表 2 具有更高密度的下下颌-肺门梯度,与亚表 1 相比,磨玻璃影的比例更大。亚表型 1 显示与内皮功能障碍相关的合并症患病率高于亚表型 2,90 天死亡率高于亚表型 2,即使在调整了具有临床意义的变量后也是如此。将肺部 CT 数据整合到 LCA 中使我们能够识别具有不同临床轨迹的 COVID-19 的两种亚表型。这些探索性发现表明,由机器学习指导的自动成像表征在呼吸衰竭患者的亚表型中的作用。 试用注册:ClinicalTrials.gov 标识符:NCT04395482。注册日期:19/05/2020。