当前位置: X-MOL 学术Demographic Research › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data errors in mortality estimation: Formal demographic analysis of under-registration, under-enumeration, and age misreporting (by Carl Schmertmann, Bernardo Lanza Queiroz, Marcos Gonzaga)
Demographic Research ( IF 2.1 ) Pub Date : 2024-08-05
Carl Schmertmann, Bernardo Lanza Queiroz, Marcos Gonzaga

Background: Omissions and misreported ages in both death and exposure data cause bias in mortality and life expectancy estimates. Most discussions of data errors have focused on a single type of error only, and most rely on empirical examples rather than formal analysis. Objective: We wish to analyze data errors and their interactions in a single, coherent framework in which all three of the major data problems – death under-registration, census underenumeration, and age misreporting – coexist and interact. Methods: We build a framework for decomposing the biases caused by various data errors in mortality rates and life expectancy calculations. In addition to purely mathematical analysis, we apply the calculations to mortality and population data from Brazil, a country with intermediate data quality. Results: Analytical and empirical calculations show that biases caused by data errors vary considerably across ages; that age misreporting has very small effects on life expectancy calculations at old ages; and that enumeration and registration errors are likely to cause much larger biases than age misreporting. Conclusions: Analytical and empirical calculations show that biases caused by data errors vary considerably across ages; that age misreporting has very small effects on life expectancy calculations at old ages; and that enumeration and registration errors are likely to cause much larger biases than age misreporting. Contribution: Combining an explicit analytical structure with empirical examples allows improved understanding of the consequences of data errors for mortality estimates in a wide variety of settings. It also provides insights for further study.

中文翻译:


死亡率估计中的数据错误:登记不足、查点不足和年龄误报的正式人口分析(Carl Schmertmann、Bernardo Lanza Queiroz、Marcos Gonzaga)



背景:死亡和暴露数据中的遗漏和误报年龄导致死亡率和预期寿命估计出现偏差。大多数关于数据错误的讨论都只关注单一类型的错误,并且大多数依赖于经验示例而不是形式分析。目标:我们希望在一个单一、连贯的框架中分析数据错误及其相互作用,在这个框架中,所有三个主要数据问题——死亡登记不足、人口普查漏报和年龄误报——共存并相互作用。方法:我们建立了一个框架,用于分解死亡率和预期寿命计算中各种数据错误引起的偏差。除了纯粹的数学分析之外,我们还将计算应用于数据质量中等的国家巴西的死亡率和人口数据。结果:分析和实证计算表明,数据错误引起的偏差在不同年龄段之间差异很大;年龄误报对老年预期寿命的计算影响非常小;计数和登记错误可能会导致比年龄误报更大的偏差。结论:分析和实证计算表明,数据错误引起的偏差在不同年龄段之间存在很大差异;年龄误报对老年预期寿命的计算影响非常小;计数和登记错误可能会导致比年龄误报更大的偏差。贡献:将明确的分析结构与实证示例相结合,可以更好地理解数据错误对各种环境下死亡率估计的后果。它还为进一步研究提供了见解。
更新日期:2024-08-05
down
wechat
bug