当前位置:
X-MOL 学术
›
IEEE Trans. Ind. Inform.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Online Fault Diagnosis Using Bioinspired Spike Neural Network
IEEE Transactions on Industrial Informatics ( IF 11.7 ) Pub Date : 2024-06-12 , DOI: 10.1109/tii.2024.3403253 Lie Xu 1 , Daxiong Ji 1
IEEE Transactions on Industrial Informatics ( IF 11.7 ) Pub Date : 2024-06-12 , DOI: 10.1109/tii.2024.3403253 Lie Xu 1 , Daxiong Ji 1
Affiliation
Data-driven fault diagnosis methods suffer from restrictive assumptions that hinder adaptability to varying work conditions, rendering offline modes insufficient. Addressing this challenge, a bioinspired spike neural network (bio-SNN) is proposed, featuring an innovative online learning mode. The network employs a novel spike encoding method with data compression for efficiently transforming time series data into spike sequences. This encoding method involves converting 1-D series data into a 2-D spectrogram using a filter bank, incorporating a stochastic spike rate for a more flexible representation compared to precise spike rates. The application of a biologically plausible learning rule, specifically spike timing-dependent plasticity (STDP), enhances the adaptability of the network. A horizontal inhibition and homeostasis mechanism are also introduced, facilitating effective online updating of synaptic weights. Experimental results on two well-established fault datasets showcase the advantages of the bio-SNN method over existing approaches, highlighting its potential for robust and adaptive fault diagnosis in practical scenarios.
中文翻译:
使用仿生尖峰神经网络进行在线故障诊断
数据驱动的故障诊断方法受到限制性假设的影响,阻碍了对不同工作条件的适应性,导致离线模式不足。为了应对这一挑战,提出了一种仿生尖峰神经网络(bio-SNN),其特点是创新的在线学习模式。该网络采用了一种新颖的尖峰编码方法和数据压缩,可以有效地将时间序列数据转换为尖峰序列。这种编码方法涉及使用滤波器组将一维系列数据转换为二维频谱图,并结合随机尖峰率以实现比精确尖峰率更灵活的表示。应用生物学上合理的学习规则,特别是尖峰时间依赖性可塑性(STDP),增强了网络的适应性。还引入了水平抑制和稳态机制,促进突触权重的有效在线更新。两个成熟的故障数据集上的实验结果展示了生物 SNN 方法相对于现有方法的优势,突出了其在实际场景中稳健和自适应故障诊断的潜力。
更新日期:2024-06-12
中文翻译:
使用仿生尖峰神经网络进行在线故障诊断
数据驱动的故障诊断方法受到限制性假设的影响,阻碍了对不同工作条件的适应性,导致离线模式不足。为了应对这一挑战,提出了一种仿生尖峰神经网络(bio-SNN),其特点是创新的在线学习模式。该网络采用了一种新颖的尖峰编码方法和数据压缩,可以有效地将时间序列数据转换为尖峰序列。这种编码方法涉及使用滤波器组将一维系列数据转换为二维频谱图,并结合随机尖峰率以实现比精确尖峰率更灵活的表示。应用生物学上合理的学习规则,特别是尖峰时间依赖性可塑性(STDP),增强了网络的适应性。还引入了水平抑制和稳态机制,促进突触权重的有效在线更新。两个成熟的故障数据集上的实验结果展示了生物 SNN 方法相对于现有方法的优势,突出了其在实际场景中稳健和自适应故障诊断的潜力。