当前位置:
X-MOL 学术
›
IEEE J. Sel. Area. Comm.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cross-Domain Dual-Functional OFDM Waveform Design for Accurate Sensing/Positioning
IEEE Journal on Selected Areas in Communications ( IF 13.8 ) Pub Date : 2024-06-13 , DOI: 10.1109/jsac.2024.3414001
Fan Zhang 1 , Tianqi Mao 2 , Ruiqi Liu 3 , Zhu Han 4 , Sheng Chen 5 , Zhaocheng Wang 1
IEEE Journal on Selected Areas in Communications ( IF 13.8 ) Pub Date : 2024-06-13 , DOI: 10.1109/jsac.2024.3414001
Fan Zhang 1 , Tianqi Mao 2 , Ruiqi Liu 3 , Zhu Han 4 , Sheng Chen 5 , Zhaocheng Wang 1
Affiliation
Orthogonal frequency division multiplexing (OFDM) has been widely recognized as the representative waveform for 5G wireless networks, which can directly support sensing/positioning with existing infrastructure. To guarantee superior sensing/positioning accuracy while supporting high-speed communication simultaneously, the dual functions tend to be assigned with different resource elements (REs) due to their diverse design requirements. This motivates optimization of resource allocation/waveform design across time, frequency, power and delay-Doppler domains. Therefore, this article proposes two cross-domain waveform optimization strategies for effective convergence of OFDM-based communication and sensing/positioning, following communication- and sensing-centric criteria, respectively. For the communication-centric design, to maximize the achievable data rate, a fraction of REs are optimally allocated for communication according to prior knowledge of the communication channel. The remaining REs are then employed for sensing/positioning, where the sidelobe level and peak-to-average power ratio are suppressed by optimizing its power-frequency and phase-frequency characteristics for sensing performance improvement. For the sensing-centric design, a ‘locally’ perfect auto-correlation property is ensured for accurate sensing and positioning by adjusting the unit cells of the ambiguity function within its region of interest (RoI). Afterwards, the irrelevant cells beyond RoI, which can readily determine the sensing power allocation, are optimized with the communication power allocation to enhance the achievable data rate. Numerical results demonstrate the superiority of the proposed waveform designs.
中文翻译:
跨域双功能 OFDM 波形设计,实现精确传感/定位
正交频分复用(OFDM)已被广泛认为是5G无线网络的代表性波形,它可以直接支持现有基础设施的传感/定位。为了保证卓越的传感/定位精度,同时支持高速通信,由于其不同的设计要求,双重功能往往被分配不同的资源元素(RE)。这促进了跨时间、频率、功率和延迟多普勒域的资源分配/波形设计的优化。因此,本文提出了两种跨域波形优化策略,分别遵循以通信和传感为中心的标准,以实现基于 OFDM 的通信和传感/定位的有效融合。对于以通信为中心的设计,为了最大化可实现的数据速率,根据通信信道的先验知识,优化分配一小部分 RE 用于通信。然后,剩余的 RE 用于传感/定位,通过优化其工频和相频特性来抑制旁瓣电平和峰均功率比,以提高传感性能。对于以传感为中心的设计,通过调整感兴趣区域(RoI)内模糊度函数的单位单元,确保“局部”完美的自相关特性,以实现精确传感和定位。然后,RoI之外的不相关小区可以很容易地确定感测功率分配,并通过通信功率分配进行优化,以提高可实现的数据速率。数值结果证明了所提出的波形设计的优越性。
更新日期:2024-06-13
中文翻译:
跨域双功能 OFDM 波形设计,实现精确传感/定位
正交频分复用(OFDM)已被广泛认为是5G无线网络的代表性波形,它可以直接支持现有基础设施的传感/定位。为了保证卓越的传感/定位精度,同时支持高速通信,由于其不同的设计要求,双重功能往往被分配不同的资源元素(RE)。这促进了跨时间、频率、功率和延迟多普勒域的资源分配/波形设计的优化。因此,本文提出了两种跨域波形优化策略,分别遵循以通信和传感为中心的标准,以实现基于 OFDM 的通信和传感/定位的有效融合。对于以通信为中心的设计,为了最大化可实现的数据速率,根据通信信道的先验知识,优化分配一小部分 RE 用于通信。然后,剩余的 RE 用于传感/定位,通过优化其工频和相频特性来抑制旁瓣电平和峰均功率比,以提高传感性能。对于以传感为中心的设计,通过调整感兴趣区域(RoI)内模糊度函数的单位单元,确保“局部”完美的自相关特性,以实现精确传感和定位。然后,RoI之外的不相关小区可以很容易地确定感测功率分配,并通过通信功率分配进行优化,以提高可实现的数据速率。数值结果证明了所提出的波形设计的优越性。