当前位置: X-MOL 学术IEEE J. Sel. Area. Comm. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Maximizing the Value of Service Provisioning in Multi-User ISAC Systems Through Fairness Guaranteed Collaborative Resource Allocation
IEEE Journal on Selected Areas in Communications ( IF 13.8 ) Pub Date : 2024-06-13 , DOI: 10.1109/jsac.2024.3413973
Biwei Li 1 , Xianbin Wang 1 , Fang Fang 1
Affiliation  

The proliferation of wireless-enabled industrial applications highlights the growing importance of Integrated Sensing and Communication (ISAC) for concurrent provisioning of environment sensing and data transmission capabilities. However, the resource-hungry nature of sensing processes, coupled with competing demands from coexisting users, poses the fundamental challenge of effective and fair resource allocation in multi-user ISAC systems. To address this challenge, we propose a value of service (VoS)-oriented resource allocation scheme for concurrent heterogeneous service provisioning in a multi-user collaborative ISAC system. Specifically, a performance indicator VoS is utilized to guide system-wide effective resource allocation while guaranteeing fairness among all ISAC users. Specifically, we formulate the multi-user resource allocation problem as a bargaining game-based model and tackle it with an iterative algorithm to attain the Nash equilibrium. In each iteration, the allocation of power and bandwidth resources is optimized by solving the Lagrangian dual problem. Numerical simulations are performed under varying resource conditions, service demands, and channel states. The results demonstrate the superiority of the proposed scheme over non-collaborative alternatives and the other two benchmark schemes.

中文翻译:


通过公平保证的协作资源分配最大化多用户 ISAC 系统中服务提供的价值



无线工业应用的激增凸显了集成传感与通信 (ISAC) 对于同时提供环境传感和数据传输功能的重要性。然而,传感过程的资源匮乏性质,再加上共存用户的竞争需求,对多用户 ISAC 系统中有效和公平的资源分配提出了根本挑战。为了应对这一挑战,我们提出了一种面向服务价值(VoS)的资源分配方案,用于多用户协作 ISAC 系统中的并发异构服务提供。具体来说,利用性能指标VoS来指导系统范围内的有效资源分配,同时保证所有ISAC用户的公平性。具体来说,我们将多用户资源分配问题制定为基于讨价还价博弈的模型,并使用迭代算法来解决它以获得纳什均衡。在每次迭代中,通过解决拉格朗日对偶问题来优化功率和带宽资源的分配。数值模拟是在不同的资源条件、服务需求和信道状态下进行的。结果证明了所提出的方案相对于非协作替代方案和其他两个基准方案的优越性。
更新日期:2024-06-13
down
wechat
bug