当前位置:
X-MOL 学术
›
Crit. Rev. Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Effect of biochar, graphene, carbon nanotubes, and nanoparticles on microbial denitrification: A review
Critical Reviews in Environmental Science and Technology ( IF 11.4 ) Pub Date : 2025-1-17 , DOI: 10.1080/10643389.2024.2386086 Anhang Li 1 , Jiachao Yao 2 , Nan Li 1 , Changjie Shi 1 , Mengwei Bai 1 , Zeyu Wang 2 , Dzmitry Hrynsphan 3 , Tatsiana Savitskaya 3 , Jun Chen 2
Critical Reviews in Environmental Science and Technology ( IF 11.4 ) Pub Date : 2025-1-17 , DOI: 10.1080/10643389.2024.2386086 Anhang Li 1 , Jiachao Yao 2 , Nan Li 1 , Changjie Shi 1 , Mengwei Bai 1 , Zeyu Wang 2 , Dzmitry Hrynsphan 3 , Tatsiana Savitskaya 3 , Jun Chen 2
Affiliation
Nitrogen pollution poses a substantial threat to water bodies, making the exploration of effective treatment technologies imperative. Among these, biological denitrification stands out as one of the most efficient methods. Various materials, including biochar, graphene, carbon nanotubes, and nanoparticles, have gained widespread use across different industries due to their unique properties. Numerous studies have investigated the impact of these materials on microbial denitrification individually, focusing on their influence on key enzymatic processes, functional genes, electron transport, functional proteins, and microbial metabolic activities. This manuscript aims to contribute a comprehensive and holistic perspective by presenting consolidated data on the collective impact of biochar, graphene, carbon nanotubes, and nanoparticles on microbial denitrification. The combination of biochar and microorganisms improves denitrification performance by 415%. Graphene increases enzyme activity (100–175.4%). The coupling of carbon nanotubes and microorganisms reduced denitrification performance by 57.42%. Nanoparticles reduce denitrification performance (73.4%), enzyme activity (63%), and electron transfer rate (52.4%) by entering the cell membrane. Moreover, these materials have been observed to induce alterations in the community structure of microorganisms involved in denitrification. The manuscript delves into the intricate details of how these materials influence the conformational changes of denitrifying enzymes, emphasizing the relationship between enzyme activity and structural modifications. Overall, this manuscript not only provides a thorough analysis of the effects of biochar, graphene, carbon nanotubes, and nanoparticles on microbial denitrification but also explores their implications for the conformational dynamics of denitrifying enzymes. Furthermore, it outlines avenues for future research, offering a roadmap to guide upcoming studies in this critical field.
中文翻译:
生物炭、石墨烯、碳纳米管和纳米颗粒对微生物反硝化作用的影响综述
氮污染对水体构成重大威胁,因此必须探索有效的处理技术。其中,生物反硝化是最有效的方法之一。各种材料,包括生物炭、石墨烯、碳纳米管和纳米颗粒,由于其独特的特性,已在不同行业中得到广泛使用。许多研究分别调查了这些材料对微生物反硝化的影响,重点是它们对关键酶促过程、功能基因、电子传递、功能蛋白和微生物代谢活动的影响。本手稿旨在通过提供有关生物炭、石墨烯、碳纳米管和纳米颗粒对微生物反氮化作用的集体影响的综合数据,提供全面和整体的视角。生物炭和微生物的组合将反硝化性能提高了 415%。石墨烯增加酶活性 (100–175.4%)。碳纳米管和微生物的耦合使反硝化性能降低了 57.42%。纳米颗粒进入细胞膜会降低反硝化性能 (73.4%)、酶活性 (63%) 和电子转移速率 (52.4%)。此外,已观察到这些材料会诱导参与反硝化作用的微生物群落结构的改变。该手稿深入探讨了这些材料如何影响反硝化酶构象变化的复杂细节,强调了酶活性和结构修饰之间的关系。 总的来说,这份手稿不仅全面分析了生物炭、石墨烯、碳纳米管和纳米颗粒对微生物反硝化的影响,还探讨了它们对反硝化酶构象动力学的影响。此外,它概述了未来研究的途径,为指导这一关键领域即将进行的研究提供了路线图。
更新日期:2024-12-06
中文翻译:
生物炭、石墨烯、碳纳米管和纳米颗粒对微生物反硝化作用的影响综述
氮污染对水体构成重大威胁,因此必须探索有效的处理技术。其中,生物反硝化是最有效的方法之一。各种材料,包括生物炭、石墨烯、碳纳米管和纳米颗粒,由于其独特的特性,已在不同行业中得到广泛使用。许多研究分别调查了这些材料对微生物反硝化的影响,重点是它们对关键酶促过程、功能基因、电子传递、功能蛋白和微生物代谢活动的影响。本手稿旨在通过提供有关生物炭、石墨烯、碳纳米管和纳米颗粒对微生物反氮化作用的集体影响的综合数据,提供全面和整体的视角。生物炭和微生物的组合将反硝化性能提高了 415%。石墨烯增加酶活性 (100–175.4%)。碳纳米管和微生物的耦合使反硝化性能降低了 57.42%。纳米颗粒进入细胞膜会降低反硝化性能 (73.4%)、酶活性 (63%) 和电子转移速率 (52.4%)。此外,已观察到这些材料会诱导参与反硝化作用的微生物群落结构的改变。该手稿深入探讨了这些材料如何影响反硝化酶构象变化的复杂细节,强调了酶活性和结构修饰之间的关系。 总的来说,这份手稿不仅全面分析了生物炭、石墨烯、碳纳米管和纳米颗粒对微生物反硝化的影响,还探讨了它们对反硝化酶构象动力学的影响。此外,它概述了未来研究的途径,为指导这一关键领域即将进行的研究提供了路线图。