当前位置:
X-MOL 学术
›
Cancer Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrative Modeling of Signaling Network Dynamics Identifies Cell Type-selective Therapeutic Strategies for FGFR4-driven Cancers
Cancer Research ( IF 12.5 ) Pub Date : 2024-08-02 , DOI: 10.1158/0008-5472.can-23-3409 Sungyoung Shin 1 , Nicole J Chew 2 , Milad Ghomlaghi 3 , Anderly C Chüeh 3 , Yunhui Jeong 3 , Lan K Nguyen 1 , Roger J Daly 3
Cancer Research ( IF 12.5 ) Pub Date : 2024-08-02 , DOI: 10.1158/0008-5472.can-23-3409 Sungyoung Shin 1 , Nicole J Chew 2 , Milad Ghomlaghi 3 , Anderly C Chüeh 3 , Yunhui Jeong 3 , Lan K Nguyen 1 , Roger J Daly 3
Affiliation
Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple negative breast cancer (TNBC) and hepatocellular carcinoma (HCC). However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in TNBC cells. Analyzing the effects of co-targeting specific network nodes by systematically simulating the model predicted synergy of co-targeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, co-targeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that while AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven HCC cell line, where there is a synergistic effect of co-targeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type-selective combination therapies and enhancing precision cancer treatment.
中文翻译:
信号网络动力学的综合建模确定了 FGFR4 驱动癌症的细胞类型选择性治疗策略
致癌 FGFR4 信号转导代表了多种癌症类型的潜在治疗靶点,包括三阴性乳腺癌 (TNBC) 和肝细胞癌 (HCC)。然而,对 FGFR4 单药治疗的耐药性仍然是一个主要挑战,这凸显了有效联合治疗的必要性。我们的研究试图开发一个 FGFR4 信号传导的综合计算模型,并提供对信号动力学驱动的耐药机制的网络级见解。一种将计算网络建模与实验验证相结合的综合方法揭示了 TNBC 细胞中 FGFR4 靶向后有效的 AKT 再激活。通过系统模拟模型预测共靶向 FGFR4 和 AKT 或特异性 ErbB 激酶的协同作用,分析共靶向特定网络节点的效果,随后通过实验验证得到证实;然而,共靶向 FGFR4 和 PI3K 并不协同。整合了来自数百种癌细胞系的蛋白质表达数据,以使模型适应不同的细胞环境。这表明,虽然 AKT 反弹很常见,但并不是普遍现象。例如,ERK 再激活发生在某些细胞类型中,包括 FGFR4 驱动的 HCC 细胞系,其中存在共靶向 FGFR4 和 MEK 而不是 AKT 的协同作用。总之,本研究为药物诱导的网络重塑和蛋白质表达异质性在靶向治疗反应中的作用提供了关键见解。这些发现强调了计算网络建模在设计细胞类型选择性联合疗法和增强精准癌症治疗方面的效用。
更新日期:2024-08-02
中文翻译:
信号网络动力学的综合建模确定了 FGFR4 驱动癌症的细胞类型选择性治疗策略
致癌 FGFR4 信号转导代表了多种癌症类型的潜在治疗靶点,包括三阴性乳腺癌 (TNBC) 和肝细胞癌 (HCC)。然而,对 FGFR4 单药治疗的耐药性仍然是一个主要挑战,这凸显了有效联合治疗的必要性。我们的研究试图开发一个 FGFR4 信号传导的综合计算模型,并提供对信号动力学驱动的耐药机制的网络级见解。一种将计算网络建模与实验验证相结合的综合方法揭示了 TNBC 细胞中 FGFR4 靶向后有效的 AKT 再激活。通过系统模拟模型预测共靶向 FGFR4 和 AKT 或特异性 ErbB 激酶的协同作用,分析共靶向特定网络节点的效果,随后通过实验验证得到证实;然而,共靶向 FGFR4 和 PI3K 并不协同。整合了来自数百种癌细胞系的蛋白质表达数据,以使模型适应不同的细胞环境。这表明,虽然 AKT 反弹很常见,但并不是普遍现象。例如,ERK 再激活发生在某些细胞类型中,包括 FGFR4 驱动的 HCC 细胞系,其中存在共靶向 FGFR4 和 MEK 而不是 AKT 的协同作用。总之,本研究为药物诱导的网络重塑和蛋白质表达异质性在靶向治疗反应中的作用提供了关键见解。这些发现强调了计算网络建模在设计细胞类型选择性联合疗法和增强精准癌症治疗方面的效用。