International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2024-08-02 , DOI: 10.1108/hff-03-2024-0199 Sweta , RamReddy Chetteti , Pranitha Janapatla
Purpose
This study aims to optimize heat transfer efficiency and minimize friction factor and entropy generation in hybrid nanofluid flows through porous media. By incorporating factors such as melting effect, buoyancy, viscous dissipation and no-slip velocity on a stretchable surface, the aim is to enhance overall performance. Additionally, sensitivity analysis using response surface methodology is used to evaluate the influence of key parameters on response functions.
Design/methodology/approach
After deriving suitable Lie-group transformations, the modeled equations are solved numerically using the “spectral local linearization method.” This approach is validated through rigorous numerical comparisons and error estimations, demonstrating strong alignment with prior studies.
Findings
The findings reveal that higher Darcy numbers and melting parameters are associated with decreased entropy (35.86% and 35.93%, respectively) and shear stress, increased heat transmission (16.4% and 30.41%, respectively) in hybrid nanofluids. Moreover, response surface methodology uses key factors, concerning the Nusselt number and shear stress as response variables in a quadratic model. Notably, the model exhibits exceptional accuracy with $R^2$ values of 99.99% for the Nusselt number and 100.00% for skin friction. Additionally, optimization results demonstrate a notable sensitivity to the key parameters.
Research limitations/implications
Lubrication is a vital method to minimize friction and wear in the automobile sector, contributing significantly to energy efficiency, environmental conservation and carbon reduction. The incorporation of nickel and manganese zinc ferrites into SAE 20 W-40 motor oil lubricants, as defined by the Society of Automotive Engineers, significantly improves their performance, particularly in terms of tribological attributes.
Originality/value
This work stands out for its focus on applications such as hybrid electromagnetic fuel cells and nano-magnetic material processing. While these applications are gaining interest, there is still a research gap regarding the effects of melting on heat transfer in a NiZnFe_2O_4-MnZnFe_2O_4/20W40 motor oil hybrid nanofluid over a stretchable surface, necessitating a thorough investigation that includes both numerical simulations and statistical analysis.
中文翻译:
基于响应面方法的新模型可优化铁氧体/机油混合纳米流体的传热和剪切应力
目的
本研究旨在优化传热效率并最大限度地减少混合纳米流体流经多孔介质时的摩擦因数和熵的产生。通过在可拉伸表面上结合熔化效应、浮力、粘性耗散和无滑移速度等因素,目标是提高整体性能。此外,使用响应面方法进行灵敏度分析来评估关键参数对响应函数的影响。
设计/方法论/途径
推导合适的李群变换后,使用“谱局部线性化方法”对建模方程进行数值求解。该方法通过严格的数值比较和误差估计得到验证,证明与先前的研究具有很强的一致性。
发现
研究结果表明,混合纳米流体中较高的达西数和熔化参数与熵降低(分别为 35.86% 和 35.93%)和剪切应力、热传递增加(分别为 16.4% 和 30.41%)相关。此外,响应面方法使用关键因素,将努塞尔数和剪切应力作为二次模型中的响应变量。值得注意的是,该模型表现出卓越的准确性,努塞尔数 $R^2$ 值为 99.99%,皮肤摩擦值为 100.00%。此外,优化结果表明对关键参数具有显着的敏感性。
研究局限性/影响
润滑是汽车领域减少摩擦和磨损的重要方法,对能源效率、环境保护和碳减排做出了重大贡献。根据汽车工程师协会的定义,在 SAE 20 W-40 机油润滑剂中加入镍和锰锌铁氧体可显着提高其性能,特别是在摩擦学属性方面。
原创性/价值
这项工作因其专注于混合电磁燃料电池和纳米磁性材料加工等应用而脱颖而出。虽然这些应用越来越受到关注,但关于熔化对 NiZnFe_2O_4-MnZnFe_2O_4/20W40 机油混合纳米流体在可拉伸表面上的传热的影响仍然存在研究空白,需要进行包括数值模拟和统计分析在内的彻底研究。