当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Decoupling light- and oxygen-induced degradation mechanisms of Sn–Pb perovskites in all perovskite tandem solar cells
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-08-02 , DOI: 10.1039/d4ee02427c
Yang Bai 1, 2 , Ruijia Tian 1 , Kexuan Sun 1 , Chang Liu 1, 2 , Xiting Lang 1 , Ming Yang 1 , Yuanyuan Meng 1 , Chuanxiao Xiao 1 , Yaohua Wang 1 , Xiaoyi Lu 1 , Jingnan Wang 1 , Haibin Pan 1 , Zhenhua Song 1 , Shujing Zhou 1 , Ziyi Ge 1, 2
Affiliation  

Efficiencies of all-perovskite tandem solar cells are dominantly constrained by the challenges pertaining to defects and stability within tin–lead (Sn–Pb) perovskite sub-cells. On top of the well-studied oxygen oxidation, defects related to iodide and the consequent generation of I2 upon light illumination pose significant degradation risks, leading to Sn2+ → Sn4+ oxidation. To address this, we screen phenylhydrazine cation (PEH+)-based additives of varying polarities, which strongly coordinate with Sn for reinforcing the Sn–I bond, and interacting electrostatically with negatively charged defects (VSn, VFA, ISn, and Ii). The synergistic effects suppress the photo-induced formation of I2 and the subsequent oxidation of Sn–Pb perovskites, circumventing the stability concerns of narrow bandgap (NBG) perovskite solar cells (PSCs) under operational conditions. The reducing agent 2-mercaptobenzimidazole (MBI) was further introduced into the precursor solution, which not only demonstrates strong resistance to oxygen erosion, but also reduces the deep-level defect density of the Sn–Pb perovskites. Consequently, single-junction Sn–Pb cells achieve a champion efficiency of 23.0%. The enhanced light stability allows these cells to retain 89.4% of their initial efficiency after 400 hours of continuous operation, as assessed by tracking the maximum power point (MPP). We further integrated the Sn–Pb perovskite into a two-terminal (2T) monolithic all-perovskite tandem cell and achieved a PCE of 27.9% (27.2% certified). Meanwhile, the encapsulated tandem device maintained 90.3% of its initial PCE after 300 h through MPP tracking. The work offers new ideas for tackling the stability issues related to light-triggered oxidation.

中文翻译:


所有钙钛矿串联太阳能电池中锡铅钙钛矿的光和氧诱导降解机制的解耦



全钙钛矿串联太阳能电池的效率主要受到锡铅(Sn-Pb)钙钛矿子电池内的缺陷和稳定性挑战的限制。除了充分研究的氧氧化之外,与碘化物相关的缺陷以及随后在光照射下生成 I 2带来了显着的降解风险,导致 Sn 2+ → Sn 4+氧化。为了解决这个问题,我们筛选了不同极性的基于苯肼阳离子 (PEH + ) 的添加剂,它们与 Sn 强烈配位以增强 Sn-I 键,并与带负电的缺陷(V Sn 、 V FA 、 I Sn和我-)。协同效应抑制了光诱导的 I 2形成以及随后的 Sn-Pb 钙钛矿氧化,从而避免了窄带隙 (NBG) 钙钛矿太阳能电池 (PSC) 在工作条件下的稳定性问题。在前驱体溶液中进一步引入还原剂2-巯基苯并咪唑(MBI),不仅表现出强大的抗氧侵蚀能力,而且降低了Sn-Pb钙钛矿的深层缺陷密度。因此,单结 Sn-Pb 电池的最高效率为 23.0%。通过跟踪最大功率点 (MPP) 进行评估,增强的光稳定性使这些电池在连续运行 400 小时后仍能保持 89.4% 的初始效率。 我们进一步将 Sn-Pb 钙钛矿集成到两端 (2T) 单片全钙钛矿串联电池中,并实现了 27.9% 的 PCE(经过认证的 27.2%)。同时,通过 MPP 跟踪,封装的串联器件在 300 小时后仍保持其初始 PCE 的 90.3%。这项工作为解决与光触发氧化相关的稳定性问题提供了新思路。
更新日期:2024-08-03
down
wechat
bug