当前位置:
X-MOL 学术
›
Water Resour. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Monitoring Water Level of a Surficial Aquifer Using Distributed Acoustic Sensing and Ballistic Surface Waves
Water Resources Research ( IF 4.6 ) Pub Date : 2024-07-31 , DOI: 10.1029/2023wr036172 Valeriia Sobolevskaia 1 , Jonathan Ajo‐Franklin 1 , Feng Cheng 2 , Shan Dou 3 , Nathaniel J. Lindsey 4 , Anna Wagner 5
Water Resources Research ( IF 4.6 ) Pub Date : 2024-07-31 , DOI: 10.1029/2023wr036172 Valeriia Sobolevskaia 1 , Jonathan Ajo‐Franklin 1 , Feng Cheng 2 , Shan Dou 3 , Nathaniel J. Lindsey 4 , Anna Wagner 5
Affiliation
Groundwater resources play an increasingly crucial role in providing the water required to sustain the environment. However, our understanding of the state of surficial aquifers and their spatiotemporal dynamics remains poor. In this study, we demonstrate how Rayleigh wave velocity variation can be used as a direct indicator of changes in the water level of a surficial aquifer in a discontinuous permafrost environment. Distributed acoustic sensing data, collected on a trenched fiber-optic cable in Fairbanks, AK, was processed using the multichannel analysis of surface waves approach to obtain temporal velocity variations. A semi-permanent surface orbital vibrator was utilized to provide a repeatable source of energy for monitoring. To understand the observed velocity perturbations, we developed a rock physics model (RPM) representing the aquifer with the underlying permafrost and accounting for physical processes associated with water level change. Our analyses demonstrated a strong correlation between precipitation-driven head variation and seismic velocity changes at all recorded frequencies. The proposed model accurately predicted a recorded 3% velocity increase for each 0.5 m of head drop and indicated that the pore pressure effect accounted for approximately 75% of the observed phase velocity change. Surface wave inversion and sensitivity analysis suggested that the high velocity contrast in the permafrost table shifts the surface wave sensitivity toward the first 3 m of soil where hydrological forcing occurs. This case study demonstrates how surface wave analysis combined with an RPM can be used for quantitative interpretation of the acoustic response of surficial aquifers.
中文翻译:
使用分布式声学传感和弹道表面波监测地表含水层的水位
地下水资源在提供维持环境所需的水方面发挥着越来越重要的作用。然而,我们对地表含水层的状态及其时空动态的了解仍然很薄弱。在这项研究中,我们演示了如何使用瑞利波速变化作为不连续永久冻土环境中地表含水层水位变化的直接指标。使用表面波方法的多通道分析来处理在阿拉斯加州费尔班克斯的沟槽光纤电缆上收集的分布式声学传感数据,以获得时间速度变化。利用半永久性表面轨道振动器为监测提供可重复的能源。为了了解观察到的速度扰动,我们开发了一个岩石物理模型(RPM),该模型代表含水层及其下面的永久冻土层,并考虑了与水位变化相关的物理过程。我们的分析表明,在所有记录频率下,降水驱动的水头变化与地震速度变化之间存在很强的相关性。所提出的模型准确地预测了记录的每 0.5 m 水头下降 3% 的速度增加,并表明孔隙压力效应约占观测到的相速度变化的 75%。表面波反演和敏感性分析表明,永久冻土层中的高速对比将表面波敏感性向发生水文强迫的土壤的前3 m 移动。本案例研究展示了如何将表面波分析与 RPM 相结合来定量解释地表含水层的声学响应。
更新日期:2024-08-03
中文翻译:
使用分布式声学传感和弹道表面波监测地表含水层的水位
地下水资源在提供维持环境所需的水方面发挥着越来越重要的作用。然而,我们对地表含水层的状态及其时空动态的了解仍然很薄弱。在这项研究中,我们演示了如何使用瑞利波速变化作为不连续永久冻土环境中地表含水层水位变化的直接指标。使用表面波方法的多通道分析来处理在阿拉斯加州费尔班克斯的沟槽光纤电缆上收集的分布式声学传感数据,以获得时间速度变化。利用半永久性表面轨道振动器为监测提供可重复的能源。为了了解观察到的速度扰动,我们开发了一个岩石物理模型(RPM),该模型代表含水层及其下面的永久冻土层,并考虑了与水位变化相关的物理过程。我们的分析表明,在所有记录频率下,降水驱动的水头变化与地震速度变化之间存在很强的相关性。所提出的模型准确地预测了记录的每 0.5 m 水头下降 3% 的速度增加,并表明孔隙压力效应约占观测到的相速度变化的 75%。表面波反演和敏感性分析表明,永久冻土层中的高速对比将表面波敏感性向发生水文强迫的土壤的前3 m 移动。本案例研究展示了如何将表面波分析与 RPM 相结合来定量解释地表含水层的声学响应。