当前位置: X-MOL 学术J. Quant. Spectrosc. Radiat. Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Favorable and unfavorable many-body interactions for near-field radiative heat transfer in nanoparticle networks
Journal of Quantitative Spectroscopy and Radiative Transfer ( IF 2.3 ) Pub Date : 2024-07-20 , DOI: 10.1016/j.jqsrt.2024.109129
Minggang Luo , Junming Zhao , Linhua Liu , Mauro Antezza

Near-field radiative heat transfer (NFRHT) in point-dipole nanoparticle networks is complicated due to the multiple scattering of thermally excited electromagnetic wave (namely, many-body interaction, MBI). The MBI regime is analyzed using the many-body radiative heat transfer theory at the particle scale for networks of a few nanoparticles. Effect of MBI on radiative heat diffusion in networks of a large number of nanoparticles is analyzed using the normal-diffusion radiative heat transfer theory at the continuum scale. An influencing factor is defined to numerically figure out the border of the different many-body interaction regimes. The whole space near the two nanoparticles can be divided into four zones, non-MBI zone, enhancement zone, inhibition zone and forbidden zone, respectively. Enhancement zone is relatively smaller than the inhibition zone, so many particles can lie in the inhibiting zone that the inhibition effect of many-body interaction on NFRHT in nanoparticle networks is common in literature. Analysis on the radiative thermal energy confirms that multiple scattering caused by the inserted scatterer accounts for the enhancement and inhibition of NFRHT. By arranging the nanoparticle network in aspect of structures and optical properties, the MBI can be used to modulate radiative heat diffusion characterized by the radiative effective thermal conductivity () over a wide range, from inhibition (over 55% reduction) to amplification (30 times of magnitude). To achieve a notable MBI, it is necessary to introduce particles that have resonances well-matched with those of the particles of interest, irrespective of their match with the Planckian window. This work may help for the understanding of the thermal radiation in nanoparticle networks.

中文翻译:


纳米粒子网络中近场辐射传热的有利和不利的多体相互作用



由于热激发电磁波的多次散射(即多体相互作用,MBI),点偶极纳米粒子网络中的近场辐射传热(NFRHT)变得复杂。使用多体辐射传热理论在粒子尺度上对少数纳米颗粒网络进行 MBI 状态分析。使用连续尺度的法向扩散辐射传热理论分析了 MBI 对大量纳米粒子网络中辐射热扩散的影响。定义影响因素以数字方式找出不同多体交互机制的边界。两个纳米粒子附近的整个空间可以分为四个区域,分别是非MBI区、增强区、抑制区和禁区。增强区比抑制区相对较小,因此许多颗粒可以位于抑制区,因此纳米颗粒网络中多体相互作用对 NFRHT 的抑制作用在文献中很常见。对辐射热能的分析证实,插入的散射体引起的多重散射是 NFRHT 的增强和抑制的原因。通过在结构和光学特性方面排列纳米粒子网络,MBI可用于在很宽的范围内调节以辐射有效导热系数()为特征的辐射热扩散,从抑制(减少超过55%)到放大(30倍)的大小)。为了实现显着的 MBI,有必要引入与感兴趣粒子的共振良好匹配的粒子,无论它们与普朗克窗口的匹配如何。这项工作可能有助于理解纳米粒子网络中的热辐射。
更新日期:2024-07-20
down
wechat
bug