当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nitrogen and sulfur incorporated chitosan-derived carbon sphere hybrid MXene as highly efficient electrocatalyst for oxygen reduction reaction
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-31 , DOI: 10.1016/j.mtphys.2024.101528 Mohamedazeem M. Mohideen , Abdul Qadir , Balachandran Subramanian , Seeram Ramakrishna , Yong Liu
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-31 , DOI: 10.1016/j.mtphys.2024.101528 Mohamedazeem M. Mohideen , Abdul Qadir , Balachandran Subramanian , Seeram Ramakrishna , Yong Liu
The quest for non-precious electrocatalysts through biomass for energy applications has attracted keen interest, but optimization for fuel cells remains challenging. Herein, we have developed a nitrogen and sulfur-anchored MXene hybrid chitosan-derived carbon sphere (N,S-MXC) reporting for the first time as a novel oxygen reduction reaction (ORR) electrocatalyst. Interestingly, as the mass ratio of MXene to Chitosan varied by (1:2, 1:1, and 2:1), the microstructures of the as-prepared catalysts changed, which drastically influenced the corresponding ORR performance. Notably, when the mass ratio was maintained to be 1:2, TiC nanoparticles were dispersed on the surface of the biomass carbon core shell. They created multimodal porous morphology that helps to facilitate faster electron transfer, resulting in a high onset-potential of 0.89 V and limiting current density of −4.2 mA/cm as well as excellent durability with minimum half-wave potential loss of 2.3 mV after 5000 cyclic voltammetry (CV) cycles than benchmark Pt/C. In addition, the corresponding catalyst also possessed robust stability of 87.47 % and an excellent methanal poisoning tolerance effect in an alkaline medium. In a nutshell, this work paves the pathway for converting sea animal waste to develop porous carbon as supporting material for fuel cells that directly or indirectly support achieving carbon neutrality.
中文翻译:
氮和硫掺入壳聚糖衍生的碳球杂化 MXene 作为氧还原反应的高效电催化剂
通过生物质寻找非贵重电催化剂用于能源应用引起了人们的浓厚兴趣,但燃料电池的优化仍然具有挑战性。在此,我们开发了一种氮和硫锚定的 MXene 杂化壳聚糖衍生的碳球 (N,S-MXC),首次报告作为一种新型氧还原反应 (ORR) 电催化剂。有趣的是,随着 MXene 与壳聚糖的质量比变化(1:2、1:1 和 2:1),所制备的催化剂的微观结构发生变化,从而极大地影响相应的 ORR 性能。值得注意的是,当质量比保持在1:2时,TiC纳米粒子分散在生物质碳核壳的表面。他们创造了多峰多孔形态,有助于促进更快的电子转移,从而产生 0.89 V 的高起始电势和 -4.2 mA/cm 的极限电流密度,以及出色的耐用性,5000 次后半波电势损失最小为 2.3 mV循环伏安 (CV) 循环数高于基准 Pt/C。此外,相应的催化剂在碱性介质中还具有87.47%的稳健稳定性和优异的耐甲醛中毒效果。简而言之,这项工作为将海洋动物废物转化为开发多孔碳作为燃料电池的支撑材料铺平了道路,直接或间接支持实现碳中和。
更新日期:2024-07-31
中文翻译:
氮和硫掺入壳聚糖衍生的碳球杂化 MXene 作为氧还原反应的高效电催化剂
通过生物质寻找非贵重电催化剂用于能源应用引起了人们的浓厚兴趣,但燃料电池的优化仍然具有挑战性。在此,我们开发了一种氮和硫锚定的 MXene 杂化壳聚糖衍生的碳球 (N,S-MXC),首次报告作为一种新型氧还原反应 (ORR) 电催化剂。有趣的是,随着 MXene 与壳聚糖的质量比变化(1:2、1:1 和 2:1),所制备的催化剂的微观结构发生变化,从而极大地影响相应的 ORR 性能。值得注意的是,当质量比保持在1:2时,TiC纳米粒子分散在生物质碳核壳的表面。他们创造了多峰多孔形态,有助于促进更快的电子转移,从而产生 0.89 V 的高起始电势和 -4.2 mA/cm 的极限电流密度,以及出色的耐用性,5000 次后半波电势损失最小为 2.3 mV循环伏安 (CV) 循环数高于基准 Pt/C。此外,相应的催化剂在碱性介质中还具有87.47%的稳健稳定性和优异的耐甲醛中毒效果。简而言之,这项工作为将海洋动物废物转化为开发多孔碳作为燃料电池的支撑材料铺平了道路,直接或间接支持实现碳中和。