当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Light-Controlled Macrocyclic Supramolecular Assemblies and Luminescent Behaviors
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-08-01 , DOI: 10.1021/accountsmr.4c00157 Shuangqi Song 1 , Hengzhi Zhang 1 , Yu Liu 1, 2
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-08-01 , DOI: 10.1021/accountsmr.4c00157 Shuangqi Song 1 , Hengzhi Zhang 1 , Yu Liu 1, 2
Affiliation
Intelligent supramolecular assemblies can respond well to external stimuli such as pH, temperature, light, electricity, magnetism, and enzymes to achieve not only reversible topological morphology changes and assembly/disassembly processes but also special physical and chemical properties, which are successfully applied to biological imaging, cancer treatment, luminescent materials, anticounterfeiting, sensing, molecular switch in chemical, materials, as well as biological research fields. Among all stimuli-responsive supramolecular assemblies, light-controlled supramolecular assemblies have always attracted intense attention because light is a kind of clean and eco-friendly energy. In this Account, we focus on light-controlled supramolecular assemblies formed by four types of photoresponsive molecules and macrocyclic hosts such as cucurbit[n]urils, cyclodextrins, and crown ethers, and their regulations in luminescent materials and bioimaging. The assemblies and cascade assemblies between photoisomerization or photoreaction molecules and macrocyclic hosts mainly include: 1) light-controlled supramolecular assemblies based on macrocycles and diarylethene. As molecular switches, the open-ring and closed-ring configurations of diarylethenes can be reversibly controlled to achieve tunable fluorescence resonance energy transfer (FRET) process and further regulate luminescent behaviors to construct intelligent response cell-imaging, anticounterfeiting, and multicolor luminescence systems. 2) Light-controlled supramolecular assemblies based on macrocycles and spiropyran. Different from the diarylethenes, spiropyran can converse between positive charges in the ring-open merocyanie (MC) state, which is amphiphilic and easy to bond with macrocycles like cucurbit[n]urils, and neutral/negative charges in the ring-closed spiropyran (SP) state, which is more likely to self-assemble. Therefore, the differentiation of bonding affinities with macrocycles between MC and SP can achieve light-driven molecular machines. 3) Light-controlled supramolecular assemblies between macrocycles and azobenzene, whether azobenzene is modified to the macrocyclic hosts or functional guests, supramolecular assemblies are formed through host–guest interactions, and the topological morphology and luminescence behavior of the assemblies can be regulated by photoisomerization to apply in catalytic activity modulation, induction of microtubule (MT) assembly/disassembly, drug delivery, and others. 4) Light-controlled supramolecular assemblies based on macrocycles and anthracene, in which different bonding affinities between anthracene before and after photooxidation and macrocyclic hosts, as well as reversible dimerization, not only change the topological morphologies but also drive fluorescence phosphorescence dual imaging and the construction of photostimuli-driven luminescent lanthanide molecular switch. With the creation of macrocycles with novel building units and different modifications of photoresponsive molecules, we consider that the innovation and growth of light-controlled intelligent supramolecular materials should be more widely used in tunable material topological morphology conversion, real-time cell imaging, targeted drug delivery, organic optoelectronic materials, molecular machines, and photocatalysis reactions.
中文翻译:
光控大环超分子组装体和发光行为
智能超分子组装体可以很好地响应pH、温度、光、电、磁、酶等外界刺激,不仅实现可逆的拓扑形态变化和组装/拆卸过程,而且具有特殊的物理和化学性质,成功应用于生物领域成像、癌症治疗、发光材料、防伪、传感、化学、材料以及生物研究领域的分子开关。在所有刺激响应型超分子组装体中,光控超分子组装体一直受到人们的广泛关注,因为光是一种清洁、环保的能源。在本报告中,我们重点关注由四种光响应分子和葫芦脲、环糊精和冠醚等大环主体形成的光控超分子组装体,及其在发光材料和生物成像中的调控。光异构或光反应分子与大环主体之间的组装和级联组装主要包括:1)基于大环和二芳基乙烯的光控超分子组装。作为分子开关,二芳基乙烯的开环和闭环构型可以可逆地控制,实现可调荧光共振能量转移( FRET )过程,并进一步调控发光行为,构建智能响应细胞成像、防伪和多色发光系统。 2)基于大环化合物和螺吡喃的光控超分子组装体。 与二芳基乙烯不同,螺吡喃可以在开环部氰基( MC )状态下的正电荷和闭环螺吡喃中的中性/负电荷之间进行转换,该状态是两亲性的,易于与葫芦[n]脲等大环化合物结合。 SP ) 状态,更容易自组装。因此, MC和SP之间与大环的键合亲和力的差异可以实现光驱动的分子机器。 3)大环与偶氮苯之间的光控超分子组装体,无论偶氮苯修饰为大环主体还是功能客体,通过主客体相互作用形成超分子组装体,并且可以通过光异构化调控组装体的拓扑形貌和发光行为应用于催化活性调节、微管( MT )组装/拆卸的诱导、药物输送等。 4)基于大环和蒽的光控超分子组装体,其中光氧化前后蒽与大环主体之间不同的键合亲和力以及可逆二聚化,不仅改变了拓扑形态,而且驱动了荧光磷光双成像和构建光刺激驱动的发光镧系元素分子开关的研究。 随着新型结构单元大环化合物的创建和光响应分子的不同修饰,我们认为光控智能超分子材料的创新和生长应更广泛地应用于可调谐材料拓扑形貌转换、实时细胞成像、靶向药物等领域。传输、有机光电材料、分子机器和光催化反应。
更新日期:2024-08-01
中文翻译:
光控大环超分子组装体和发光行为
智能超分子组装体可以很好地响应pH、温度、光、电、磁、酶等外界刺激,不仅实现可逆的拓扑形态变化和组装/拆卸过程,而且具有特殊的物理和化学性质,成功应用于生物领域成像、癌症治疗、发光材料、防伪、传感、化学、材料以及生物研究领域的分子开关。在所有刺激响应型超分子组装体中,光控超分子组装体一直受到人们的广泛关注,因为光是一种清洁、环保的能源。在本报告中,我们重点关注由四种光响应分子和葫芦脲、环糊精和冠醚等大环主体形成的光控超分子组装体,及其在发光材料和生物成像中的调控。光异构或光反应分子与大环主体之间的组装和级联组装主要包括:1)基于大环和二芳基乙烯的光控超分子组装。作为分子开关,二芳基乙烯的开环和闭环构型可以可逆地控制,实现可调荧光共振能量转移( FRET )过程,并进一步调控发光行为,构建智能响应细胞成像、防伪和多色发光系统。 2)基于大环化合物和螺吡喃的光控超分子组装体。 与二芳基乙烯不同,螺吡喃可以在开环部氰基( MC )状态下的正电荷和闭环螺吡喃中的中性/负电荷之间进行转换,该状态是两亲性的,易于与葫芦[n]脲等大环化合物结合。 SP ) 状态,更容易自组装。因此, MC和SP之间与大环的键合亲和力的差异可以实现光驱动的分子机器。 3)大环与偶氮苯之间的光控超分子组装体,无论偶氮苯修饰为大环主体还是功能客体,通过主客体相互作用形成超分子组装体,并且可以通过光异构化调控组装体的拓扑形貌和发光行为应用于催化活性调节、微管( MT )组装/拆卸的诱导、药物输送等。 4)基于大环和蒽的光控超分子组装体,其中光氧化前后蒽与大环主体之间不同的键合亲和力以及可逆二聚化,不仅改变了拓扑形态,而且驱动了荧光磷光双成像和构建光刺激驱动的发光镧系元素分子开关的研究。 随着新型结构单元大环化合物的创建和光响应分子的不同修饰,我们认为光控智能超分子材料的创新和生长应更广泛地应用于可调谐材料拓扑形貌转换、实时细胞成像、靶向药物等领域。传输、有机光电材料、分子机器和光催化反应。