当前位置: X-MOL 学术Ann. N. Y. Acad. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Capillary adhesion of stick insects
Annals of the New York Academy of Sciences ( IF 4.1 ) Pub Date : 2024-08-01 , DOI: 10.1111/nyas.15195
Guillermo J Amador 1 , Brett Klaassen van Oorschot 1 , Uddalok Sen 2 , Benjamin Karman 3 , Rutger Leenders 1
Affiliation  

Scientific progress within the last few decades has revealed the functional morphology of an insect's sticky footpads—a compliant pad that secretes thin liquid films. However, the physico-chemical mechanisms underlying their adhesion remain elusive. Here, we explore these underlying mechanisms by simultaneously measuring adhesive force and contact geometry of the adhesive footpads of live, tethered Indian stick insects, Carausius morosus, spanning more than two orders of magnitude in body mass. We find that the adhesive force we measure is similar to the previous measurements that use a centrifuge. Our measurements afford us the opportunity to directly probe the adhesive stress in vivo and use existing theory on capillary adhesion to predict the surface tension of the secreted liquid and compare it to previous assumptions. From our predictions, we find that the surface tension required to generate the adhesive stresses we observed ranges between 0.68 and 12 mN m1${\rm m}^{-1}$. The low surface tension of the liquid would enhance the wetting of the stick insect's footpads and promote their ability to conform to various substrates. Our insights may inform the biomimetic design of capillary-based, reversible adhesives and motivate future studies on the physico-chemical properties of the secreted liquid.

中文翻译:


竹节虫的毛细血管粘附



过去几十年的科学进步揭示了昆虫粘性足垫的功能形态——一种分泌薄液膜的柔顺垫。然而,它们粘附的物理化学机制仍然难以捉摸。在这里,我们通过同时测量活体、拴系的印度竹节虫Carausius morosus的粘合足垫的粘合力和接触几何形状来探索这些潜在机制,其体重跨度超过两个数量级。我们发现我们测量的粘合力与之前使用离心机的测量结果相似。我们的测量使我们有机会直接探测体内的粘附应力,并使用现有的毛细管粘附理论来预测分泌液体的表面张力,并将其与之前的假设进行比较。根据我们的预测,我们发现产生我们观察到的粘合应力所需的表面张力在 0.68 到 12 mN 之间- 1 ${\rm米}^{-1}$ 。液体的低表面张力会增强竹节虫足垫的润湿性,并提高它们适应各种基质的能力。我们的见解可能会为基于毛细管的可逆粘合剂的仿生设计提供信息,并激发未来对分泌液体的物理化学性质的研究。
更新日期:2024-08-01
down
wechat
bug