Nature Photonics ( IF 32.3 ) Pub Date : 2024-08-02 , DOI: 10.1038/s41566-024-01474-3 M. Galletti , R. Assmann , M. E. Couprie , M. Ferrario , L. Giannessi , A. Irman , R. Pompili , W. Wang
Plasma-wakefield-based acceleration technology has the potential to revolutionize the field of particle accelerators. By providing acceleration gradients orders of magnitude larger than conventional radiofrequency particle accelerators, this technology allows accelerators to be reduced to the centimetre length scale. It also provides a new compact approach for driving free-electron lasers, a valuable source of high-brilliance ultrashort coherent radiation within the infrared to X-ray spectral range for the study of subatomic matter, ultrafast dynamics of complex systems and X-ray nonlinear optics, among other applications. Several laboratories around the world are working on the realization of these new light sources, exploring different configurations for the plasma wakefield driver beam, plasma stage design and operational regime. This Review describes the operating principles of plasma accelerators, an overview of recent experimental milestones for plasma-driven free-electron lasers in self-amplified spontaneous emission and seeded configurations, and highlights the remaining major challenges in the field.
中文翻译:
等离子体尾场加速光束驱动的自由电子激光器的前景
基于等离子体尾场的加速技术有可能彻底改变粒子加速器领域。通过提供比传统射频粒子加速器大几个数量级的加速度梯度,该技术可以将加速器的长度缩小到厘米级。它还提供了一种新的紧凑方法来驱动自由电子激光器,自由电子激光器是红外至 X 射线光谱范围内高亮度超短相干辐射的宝贵来源,用于研究亚原子物质、复杂系统的超快动力学和 X 射线非线性光学等应用。世界各地的多个实验室正在致力于实现这些新光源,探索等离子体尾场驱动光束的不同配置、等离子体级设计和操作机制。本综述描述了等离子体加速器的工作原理,概述了自放大自发发射和种子配置中等离子体驱动自由电子激光器的最新实验里程碑,并强调了该领域剩余的主要挑战。