当前位置: X-MOL 学术International Organization › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Racial Tropes in the Foreign Policy Bureaucracy: A Computational Text Analysis
International Organization ( IF 8.2 ) Pub Date : 2024-08-02 , DOI: 10.1017/s0020818324000146
Austin Carson , Eric Min , Maya Van Nuys

How do racial stereotypes affect perceptions in foreign policy? Race and racism as topics have long been marginalized in the study of international relations but are receiving renewed attention. In this article we assess the role of implicit racial bias in internal, originally classified assessments by the US foreign policy bureaucracy during the Cold War. We use a combination of dictionary-based and supervised machine learning techniques to identify the presence of four racial tropes in a unique corpus of intelligence documents: almost 5,000 President's Daily Briefs given to Kennedy, Johnson, Nixon, and Ford. We argue and find that entries about countries that the US deemed “racialized Others”—specifically, countries in the Global South, newly independent states, and some specific regional groupings—feature an especially large number of racial tropes. Entries about foreign developments in these places are more likely to feature interpretations that infantilize, invoke animal-based analogies, or imply irrationality or belligerence. This association holds even when accounting for the presence of conflict, the regime type of the country being analyzed, the invocation of leaders, and the topics being discussed. The article makes two primary contributions. First, it adds to the revival of attention to race but gives special emphasis to implicit racialized thinking and its appearance in bureaucratic settings. Second, we show the promise of new tools for identifying racial and other forms of implicit bias in foreign policy texts.



中文翻译:


外交政策官僚机构中的种族比喻:计算文本分析



种族刻板印象如何影响外交政策的看法?种族和种族主义作为话题在国际关系研究中长期以来一直被边缘化,但现在正在重新受到关注。在本文中,我们评估了冷战期间美国外交政策官僚机构内部最初分类评估中隐性种族偏见的作用。我们结合使用基于字典和监督的机器学习技术来识别独特的情报文件语料库中是否存在四种种族比喻:向肯尼迪、约翰逊、尼克松和福特提供的近 5,000 份总统每日简报。我们认为,有关被美国视为“种族化其他国家”的国家的条目——特别是南半球国家、新独立国家和一些特定的区域集团——具有特别大量的种族比喻。有关这些地方的外国发展的条目更有可能采用幼稚的解释、援引动物类比或暗示非理性或好战。即使考虑到冲突的存在、正在分析的国家的政权类型、领导人的召唤以及正在讨论的主题,这种关联仍然成立。本文做出了两个主要贡献。首先,它增加了对种族关注的复兴,但特别强调隐含的种族化思维及其在官僚环境中的出现。其次,我们展示了新工具的前景,用于识别外交政策文本中的种族和其他形式的隐性偏见。

更新日期:2024-08-02
down
wechat
bug