当前位置:
X-MOL 学术
›
Photonics Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
All-optical nanoscale thermometry with silicon carbide color centers
Photonics Research ( IF 6.6 ) Pub Date : 2024-06-19 , DOI: 10.1364/prj.525971 Chengying Liu , Haibo Hu 1 , Zhengtong Liu 1 , Shumin Xiao 1 , Junfeng Wang 2 , Yu Zhou 3 , Qinghai Song 3, 4
Photonics Research ( IF 6.6 ) Pub Date : 2024-06-19 , DOI: 10.1364/prj.525971 Chengying Liu , Haibo Hu 1 , Zhengtong Liu 1 , Shumin Xiao 1 , Junfeng Wang 2 , Yu Zhou 3 , Qinghai Song 3, 4
Affiliation
All-optical thermometry plays a crucial role in precision temperature measurement across diverse fields. Quantum defects in solids are one of the most promising sensors due to their excellent sensitivity, stability, and biocompatibility. Yet, it faces limitations, such as the microwave heating effect and the complexity of spectral analysis. Addressing these challenges, we introduce a novel approach to nanoscale optical thermometry using quantum defects in silicon carbide (SiC), a material compatible with complementary metal-oxide-semiconductor (CMOS) processes. This method leverages the intensity ratio between anti-Stokes and Stokes emissions from SiC color centers, overcoming the drawbacks of traditional techniques such as optically detected magnetic resonance (ODMR) and zero-phonon line (ZPL) analysis. Our technique provides a real-time, highly sensitive (1.06% K−1 ), and diffraction-limited temperature sensing protocol, which potentially helps enhance thermal management in the future miniaturization of electronic components.
中文翻译:
采用碳化硅色心的全光学纳米级测温
全光测温在各个领域的精密温度测量中发挥着至关重要的作用。固体中的量子缺陷由于其优异的灵敏度、稳定性和生物相容性而成为最有前途的传感器之一。然而,它面临着局限性,例如微波加热效应和光谱分析的复杂性。为了解决这些挑战,我们引入了一种利用碳化硅(SiC)中的量子缺陷进行纳米级光学测温的新方法,碳化硅是一种与互补金属氧化物半导体(CMOS)工艺兼容的材料。该方法利用 SiC 色心的反斯托克斯和斯托克斯发射之间的强度比,克服了光学检测磁共振 (ODMR) 和零声子线 (ZPL) 分析等传统技术的缺点。我们的技术提供了实时、高灵敏度(1.06 % K −1 )和衍射极限温度传感协议,这可能有助于增强未来电子元件小型化的热管理。
更新日期:2024-06-19
中文翻译:
采用碳化硅色心的全光学纳米级测温
全光测温在各个领域的精密温度测量中发挥着至关重要的作用。固体中的量子缺陷由于其优异的灵敏度、稳定性和生物相容性而成为最有前途的传感器之一。然而,它面临着局限性,例如微波加热效应和光谱分析的复杂性。为了解决这些挑战,我们引入了一种利用碳化硅(SiC)中的量子缺陷进行纳米级光学测温的新方法,碳化硅是一种与互补金属氧化物半导体(CMOS)工艺兼容的材料。该方法利用 SiC 色心的反斯托克斯和斯托克斯发射之间的强度比,克服了光学检测磁共振 (ODMR) 和零声子线 (ZPL) 分析等传统技术的缺点。我们的技术提供了实时、高灵敏度(1.06 % K −1 )和衍射极限温度传感协议,这可能有助于增强未来电子元件小型化的热管理。