当前位置:
X-MOL 学术
›
Photonics Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-order Autler–Townes splitting in electrically tunable photonic molecules
Photonics Research ( IF 6.6 ) Pub Date : 2024-06-19 , DOI: 10.1364/prj.525601 Yihao Chen 1 , Juntao Duan 1 , Jin Li 1 , Yan Chen 2 , Jiewen Li 1 , Jianan Duan 1 , Xiaochuan Xu 1 , Jiawei Wang 1
Photonics Research ( IF 6.6 ) Pub Date : 2024-06-19 , DOI: 10.1364/prj.525601 Yihao Chen 1 , Juntao Duan 1 , Jin Li 1 , Yan Chen 2 , Jiewen Li 1 , Jianan Duan 1 , Xiaochuan Xu 1 , Jiawei Wang 1
Affiliation
Whispering gallery mode optical microresonators represent a promising avenue for realizing optical analogs of coherent light–atom interactions, circumventing experimental complexities. All-optical analogs of Autler–Townes splitting have been widely demonstrated, harnessing coupled optical microresonators, also known as photonic molecules, wherein the strong coupling between resonant fields enables energy level splitting. Here, we report the characterizations of Autler–Townes splitting in waveguide-coupled microring dimers featuring mismatched sizes. By exploiting backscattering-induced coupling via Rayleigh and Mie scatterers in individual rings, high-order Autler–Townes splitting has been realized, yielding supermode hybridization in a multi-level system. Upon resonance detuning using an integrated phase shifter, intra-cavity coupling-induced splitting becomes almost indistinguishable at the zero-detuning point where the strong inter-cavity coupling counteracts the imbalance of backscattering strengths in individual rings. Through demonstrations on the maturing silicon photonics platform, our findings establish a framework of electrically tunable photonic molecules for coupling-mediated Autler–Townes splitting, offering promising prospects for on-chip signal generation and processing across classical and quantum regimes.
中文翻译:
电可调光子分子中的高阶奥特勒-汤斯分裂
回音壁模式光学微谐振器代表了实现相干光-原子相互作用的光学模拟、规避实验复杂性的有前途的途径。奥特勒-汤斯分裂的全光学类似物已被广泛论证,利用耦合光学微谐振器(也称为光子分子),其中谐振场之间的强耦合能够实现能级分裂。在这里,我们报告了尺寸不匹配的波导耦合微环二聚体中奥特勒-汤斯分裂的特征。通过利用各个环中瑞利和米氏散射体的反向散射诱导耦合,实现了高阶奥特勒-汤斯分裂,从而在多级系统中产生超模杂化。在使用集成移相器进行谐振失谐时,腔内耦合引起的分裂在零失谐点处几乎无法区分,其中强的腔间耦合抵消了各个环中反向散射强度的不平衡。通过在成熟的硅光子平台上的演示,我们的研究结果建立了一个用于耦合介导的奥特勒-汤斯分裂的电可调光子分子框架,为跨经典和量子体系的片上信号生成和处理提供了广阔的前景。
更新日期:2024-06-19
中文翻译:
电可调光子分子中的高阶奥特勒-汤斯分裂
回音壁模式光学微谐振器代表了实现相干光-原子相互作用的光学模拟、规避实验复杂性的有前途的途径。奥特勒-汤斯分裂的全光学类似物已被广泛论证,利用耦合光学微谐振器(也称为光子分子),其中谐振场之间的强耦合能够实现能级分裂。在这里,我们报告了尺寸不匹配的波导耦合微环二聚体中奥特勒-汤斯分裂的特征。通过利用各个环中瑞利和米氏散射体的反向散射诱导耦合,实现了高阶奥特勒-汤斯分裂,从而在多级系统中产生超模杂化。在使用集成移相器进行谐振失谐时,腔内耦合引起的分裂在零失谐点处几乎无法区分,其中强的腔间耦合抵消了各个环中反向散射强度的不平衡。通过在成熟的硅光子平台上的演示,我们的研究结果建立了一个用于耦合介导的奥特勒-汤斯分裂的电可调光子分子框架,为跨经典和量子体系的片上信号生成和处理提供了广阔的前景。