Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Phase-diversity-based wavefront sensing for fluorescence microscopy
Optica ( IF 8.4 ) Pub Date : 2024-05-02 , DOI: 10.1364/optica.518559 Courtney Johnson 1 , Min Guo 2, 3 , Magdalena C. Schneider 1 , Yijun Su 1, 3 , Satya Khuon 1 , Nikolaj Reiser 4 , Yicong Wu 3 , Patrick La Riviere 4, 5 , Hari Shroff 1, 3, 5
Optica ( IF 8.4 ) Pub Date : 2024-05-02 , DOI: 10.1364/optica.518559 Courtney Johnson 1 , Min Guo 2, 3 , Magdalena C. Schneider 1 , Yijun Su 1, 3 , Satya Khuon 1 , Nikolaj Reiser 4 , Yicong Wu 3 , Patrick La Riviere 4, 5 , Hari Shroff 1, 3, 5
Affiliation
Fluorescence microscopy is an invaluable tool in biology, yet its performance is compromised when the wavefront of light is distorted due to optical imperfections or the refractile nature of the sample. Such optical aberrations can dramatically lower the information content of images by degrading the image contrast, resolution, and signal. Adaptive optics (AO) methods can sense and subsequently cancel the aberrated wavefront, but they are too complex, inefficient, slow, or expensive for routine adoption by most labs. Here, we introduce a rapid, sensitive, and robust wavefront sensing scheme based on phase diversity, a method successfully deployed in astronomy but underused in microscopy. Our method enables accurate wavefront sensing to less than λ /35 root mean square (RMS) error with few measurements, and AO with no additional hardware besides a corrective element. After validating the method with simulations, we demonstrate the calibration of a deformable mirror >hundredfold faster than comparable methods (corresponding to wavefront sensing on the ∼100ms scale), and sensing and subsequent correction of severe aberrations (RMS wavefront distortion exceeding λ /2), restoring diffraction-limited imaging on extended biological samples.
中文翻译:
用于荧光显微镜的基于相位分集的波前传感
荧光显微镜是生物学中非常宝贵的工具,但当光的波前因光学缺陷或样品的折射性质而扭曲时,其性能就会受到影响。这种光学像差会降低图像对比度、分辨率和信号,从而显着降低图像的信息内容。自适应光学 (AO) 方法可以感知并随后消除像差波前,但对于大多数实验室的常规采用而言,它们过于复杂、低效、缓慢或昂贵。在这里,我们介绍了一种基于相位分集的快速、灵敏且鲁棒的波前传感方案,这是一种在天文学中成功部署的方法,但在显微镜中尚未得到充分利用。我们的方法能够实现精确的波前传感,小于λ /35 均方根 (RMS) 误差只需很少的测量,并且除了校正元件之外无需额外硬件即可实现 AO。通过模拟验证该方法后,我们证明了可变形镜的校准速度比同类方法快数百倍(对应于~100ms尺度的波前传感),以及严重像差的传感和后续校正(RMS波前畸变超过λ /2),恢复扩展生物样品的衍射极限成像。
更新日期:2024-05-02
中文翻译:
用于荧光显微镜的基于相位分集的波前传感
荧光显微镜是生物学中非常宝贵的工具,但当光的波前因光学缺陷或样品的折射性质而扭曲时,其性能就会受到影响。这种光学像差会降低图像对比度、分辨率和信号,从而显着降低图像的信息内容。自适应光学 (AO) 方法可以感知并随后消除像差波前,但对于大多数实验室的常规采用而言,它们过于复杂、低效、缓慢或昂贵。在这里,我们介绍了一种基于相位分集的快速、灵敏且鲁棒的波前传感方案,这是一种在天文学中成功部署的方法,但在显微镜中尚未得到充分利用。我们的方法能够实现精确的波前传感,小于λ /35 均方根 (RMS) 误差只需很少的测量,并且除了校正元件之外无需额外硬件即可实现 AO。通过模拟验证该方法后,我们证明了可变形镜的校准速度比同类方法快数百倍(对应于~100ms尺度的波前传感),以及严重像差的传感和后续校正(RMS波前畸变超过λ /2),恢复扩展生物样品的衍射极限成像。