当前位置:
X-MOL 学术
›
Photonics Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate
Photonics Research ( IF 6.6 ) Pub Date : 2024-05-21 , DOI: 10.1364/prj.521172 Xinrui Zhu , Yaowen Hu 1 , Shengyuan Lu , Hana K. Warner , Xudong Li , Yunxiang Song , Letícia Magalhães , Amirhassan Shams-Ansari 2 , Andrea Cordaro , Neil Sinclair , Marko Lončar
Photonics Research ( IF 6.6 ) Pub Date : 2024-05-21 , DOI: 10.1364/prj.521172 Xinrui Zhu , Yaowen Hu 1 , Shengyuan Lu , Hana K. Warner , Xudong Li , Yunxiang Song , Letícia Magalhães , Amirhassan Shams-Ansari 2 , Andrea Cordaro , Neil Sinclair , Marko Lončar
Affiliation
The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (Q ) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution of Q factors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve a Q factor within 1 order of magnitude of the material limit.
中文翻译:
薄膜铌酸锂上的 2900 万个本征 Q 因子单片微谐振器
最近出现的薄膜铌酸锂(TFLN)扩展了集成光子学的前景。这是通过 TFLN 晶圆的商业化和先进的 TFLN 纳米加工(例如高质量干法蚀刻)实现的。然而,制造缺陷仍然将传播损耗限制在几个 dB/m,从而限制了该平台的影响。在这里,我们展示了具有创纪录的高内在质量的 TFLN 微谐振器(问)系数为 2900 万,对应于 1.3 dB/m 的超低传播损耗。我们提出了光谱分析和统计分布问不同谐振器几何形状的因素。我们的工作突破了 TFLN 光子学的制造极限,以实现问系数在材料极限的 1 个数量级内。
更新日期:2024-05-21
中文翻译:
薄膜铌酸锂上的 2900 万个本征 Q 因子单片微谐振器
最近出现的薄膜铌酸锂(TFLN)扩展了集成光子学的前景。这是通过 TFLN 晶圆的商业化和先进的 TFLN 纳米加工(例如高质量干法蚀刻)实现的。然而,制造缺陷仍然将传播损耗限制在几个 dB/m,从而限制了该平台的影响。在这里,我们展示了具有创纪录的高内在质量的 TFLN 微谐振器(问)系数为 2900 万,对应于 1.3 dB/m 的超低传播损耗。我们提出了光谱分析和统计分布问不同谐振器几何形状的因素。我们的工作突破了 TFLN 光子学的制造极限,以实现问系数在材料极限的 1 个数量级内。