当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of self-supported TiO2 nanotube arrays with hybrid point defect engineering: A bifunctional anode for Li+/Na+ storage
Acta Materialia ( IF 8.3 ) Pub Date : 2024-07-27 , DOI: 10.1016/j.actamat.2024.120228
Wei Cao , Ziwei Chen , Maolin Yang , Hanxi Guan , Xing Cheng , Ming Zhang , Feng Lin , Yinguo Xiao , Min Ling , Chengdu Liang , Jun Chen

Point defect engineering has garnered widespread application for enhancing the dynamic behavior of anode materials and improving electrochemical performance. Herein, a hybrid point defect strategy is proposed in Ti-based oxide materials to achieve N doping induced oxygen vacancies (OVs) and subsequently accelerated electron mobility and perform better diffusion kinetics. This methodology culminates in the fabrication of self-supported nanotube arrays comprising N-doped OVs-rich TiO (denoted as N-TNTs). Density functional theory (DFT) calculations and electrochemical characterizations validate that, hybrid point defects lead to high electron mobility and perform better diffusion kinetics, as well as higher Li/Na ions adsorption energy barrier and diffusion energy barrier, which in turn improves the rate performance and cycling stability. This research provides a forward-looking and feasible strategy for the application of point defect engineering in anode materials.

中文翻译:


采用混合点缺陷工程构建自支撑 TiO2 纳米管阵列:用于 Li+/Na+ 存储的双功能阳极



点缺陷工程在增强负极材料的动态行为和改善电化学性能方面获得了广泛的应用。在此,提出了钛基氧化物材料中的混合点缺陷策略,以实现氮掺杂诱导的氧空位(OV),从而加速电子迁移率并实现更好的扩散动力学。这种方法最终形成了由氮掺杂的富含 OVs 的 TiO(表示为 N-TNT)组成的自支撑纳米管阵列。密度泛函理论(DFT)计算和电化学表征证明,混合点缺陷导致高电子迁移率并表现出更好的扩散动力学,以及更高的Li/Na离子吸附能垒和扩散能垒,从而提高了倍率性能和循环稳定性。该研究为点缺陷工程在负极材料中的应用提供了具有前瞻性和可行性的策略。
更新日期:2024-07-27
down
wechat
bug