Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Low-Cost Self-Reconstructed High Entropy Oxide as an Ultra-Durable OER Electrocatalyst for Anion Exchange Membrane Water Electrolyzer
Small ( IF 13.0 ) Pub Date : 2024-07-31 , DOI: 10.1002/smll.202402241
S C Karthikeyan 1 , Shanmugam Ramakrishnan 2 , Sampath Prabhakaran 3 , Mohan Raj Subramaniam 1, 4 , Mohamed Mamlouk 2 , Do Hwan Kim 1, 5 , Dong Jin Yoo 1, 6
Small ( IF 13.0 ) Pub Date : 2024-07-31 , DOI: 10.1002/smll.202402241
S C Karthikeyan 1 , Shanmugam Ramakrishnan 2 , Sampath Prabhakaran 3 , Mohan Raj Subramaniam 1, 4 , Mohamed Mamlouk 2 , Do Hwan Kim 1, 5 , Dong Jin Yoo 1, 6
Affiliation
![]() |
Future energy loss can be minimized to a greater extent via developing highly active electrocatalysts for alkaline water electrolyzers. Incorporating an innovative design like high entropy oxides, dealloying, structural reconstruction, in situ activation can potentially reduce the energy barriers between practical and theoretical potentials. Here, a Fd-3m spinel group high entropy oxide is developed via a simple solvothermal and calcination approach. The developed (FeCoMnZnMg)3O4 electrocatalyst shows a near equimolar distribution of all the metal elements resulting in higher entropy (ΔS ≈1.61R) and higher surface area. The self-reconstructed spinel high entropy oxide (S-HEO) catalyst exhibited a lower overpotential of 240 mV to reach 10 mA cm−2 and enhanced reaction kinetics (59 mV dec−1). Noticeably, the S-HEO displayed an outstanding durability of 1000 h without any potential loss, significantly outperforming most of the reported OER electrocatalysts. Further, S-HEO is evaluated as the anode catalyst for an anion exchange membrane water electrolyzer (AEMWE) in 1 m, 0.1 m KOH, and DI water at 20 and 60 °C. These results demonstrate that S-HEO is a highly attractive, non-noble class of materials for high active oxygen evolution reaction (OER) electrocatalysts allowing fine-tuning beyond the limits of bi- or trimetallic oxides.
中文翻译:
低成本自重构高熵氧化物作为阴离子交换膜水电解槽的超耐用 OER 电催化剂
通过开发用于碱性水电解槽的高活性电催化剂,可以在更大程度上最大限度地减少未来的能量损失。结合创新设计,如高熵氧化物、脱合金、结构重建、原位活化,有可能减少实际和理论潜力之间的能量障碍。在这里,通过简单的溶剂热和煅烧方法开发了 Fd-3m 尖晶石基团高熵氧化物。开发的 (FeCoMnZnMg)3O4 电催化剂显示所有金属元素的近乎等摩尔分布,导致更高的熵 (ΔS ≈1.61R) 和更高的表面积。自重构尖晶石高熵氧化物 (S-HEO) 催化剂表现出 240 mV 的较低过电位,达到 10 mA cm-2 并增强了反应动力学 (59 mV dec-1)。值得注意的是,S-HEO 表现出 1000 小时的出色耐久性,且无任何潜在损失,明显优于大多数已报道的 OER 电催化剂。此外,S-HEO 被评估为 1 m、0.1 m KOH 中的阴离子交换膜水电解槽 (AEMWE) 和 20 和 60 °C 下去离子水的阳极催化剂。 这些结果表明,S-HEO 是一种极具吸引力的非贵金属类材料,可用于高析氧反应 (OER) 电催化剂,允许超越双金属或三金属氧化物的极限进行微调。
更新日期:2024-07-31
中文翻译:

低成本自重构高熵氧化物作为阴离子交换膜水电解槽的超耐用 OER 电催化剂
通过开发用于碱性水电解槽的高活性电催化剂,可以在更大程度上最大限度地减少未来的能量损失。结合创新设计,如高熵氧化物、脱合金、结构重建、原位活化,有可能减少实际和理论潜力之间的能量障碍。在这里,通过简单的溶剂热和煅烧方法开发了 Fd-3m 尖晶石基团高熵氧化物。开发的 (FeCoMnZnMg)3O4 电催化剂显示所有金属元素的近乎等摩尔分布,导致更高的熵 (ΔS ≈1.61R) 和更高的表面积。自重构尖晶石高熵氧化物 (S-HEO) 催化剂表现出 240 mV 的较低过电位,达到 10 mA cm-2 并增强了反应动力学 (59 mV dec-1)。值得注意的是,S-HEO 表现出 1000 小时的出色耐久性,且无任何潜在损失,明显优于大多数已报道的 OER 电催化剂。此外,S-HEO 被评估为 1 m、0.1 m KOH 中的阴离子交换膜水电解槽 (AEMWE) 和 20 和 60 °C 下去离子水的阳极催化剂。 这些结果表明,S-HEO 是一种极具吸引力的非贵金属类材料,可用于高析氧反应 (OER) 电催化剂,允许超越双金属或三金属氧化物的极限进行微调。