当前位置:
X-MOL 学术
›
ACS Macro Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Aqueous RAFT Dispersion Polymerization Mediated by an ω,ω-Macromolecular Chain Transfer Monomer: An Efficient Approach for Amphiphilic Branched Block Copolymers and the Assemblies
ACS Macro Letters ( IF 5.1 ) Pub Date : 2024-07-29 , DOI: 10.1021/acsmacrolett.4c00353 Weihong Lin 1 , Shuai Jia 1 , Yingxiang Li 2 , Li Zhang 1, 3 , Hong Liu 2 , Jianbo Tan 1, 3
ACS Macro Letters ( IF 5.1 ) Pub Date : 2024-07-29 , DOI: 10.1021/acsmacrolett.4c00353 Weihong Lin 1 , Shuai Jia 1 , Yingxiang Li 2 , Li Zhang 1, 3 , Hong Liu 2 , Jianbo Tan 1, 3
Affiliation
Herein, an ω,ω-macromolecular chain transfer monomer (macro-CTM) containing a RAFT (reversible addition–fragmentation chain transfer) group and a methacryloyl group was synthesized and used to mediate photoinitiated RAFT dispersion polymerization of hydroxypropyl methacrylate (HPMA) in water. The macro-CTM undergoes a self-condensing vinyl polymerization (SCVP) mechanism under RAFT dispersion polymerization conditions, leading to the formation of amphiphilic branched block copolymers and the assemblies. Compared with RAFT solution polymerization, it was found that the SCVP process was promoted under RAFT dispersion polymerization conditions. Morphologies of branched block copolymer assemblies could be controlled by varying the monomer concentration and the [HPMA]/[macro-CTM] ratio. The branched block copolymer vesicles could be used as seeds for seeded RAFT emulsion polymerization, and framboidal vesicles were successfully obtained. Finally, degrees of branching of branched block copolymers could be further controlled by using a binary mixture of the macro-CTM and a linear macro-RAFT agent or a small molecule CTM. We believe that this study not only provides a versatile strategy for the preparation of branched block copolymer assemblies but also offers important insights into polymer synthesis via heterogeneous RAFT polymerization.
中文翻译:
ω,ω-大分子链转移单体介导的水性 RAFT 分散聚合:两亲性支化嵌段共聚物及其组装体的有效方法
在此,合成了含有RAFT(可逆加成-断裂链转移)基团和甲基丙烯酰基的ω,ω-大分子链转移单体(macro-CTM),并用于介导甲基丙烯酸羟丙酯(HPMA)在水中的光引发RAFT分散聚合。宏观CTM在RAFT分散聚合条件下经历自缩合乙烯基聚合(SCVP)机制,导致两亲性支化嵌段共聚物和组件的形成。与RAFT溶液聚合相比,发现RAFT分散聚合条件下促进了SCVP过程。支化嵌段共聚物组装体的形态可以通过改变单体浓度和[HPMA]/[macro-CTM]比率来控制。支化嵌段共聚物囊泡可以作为种子进行RAFT乳液聚合,并成功获得了草莓状囊泡。最后,支化嵌段共聚物的支化度可以通过使用大分子CTM和线性大分子RAFT剂或小分子CTM的二元混合物来进一步控制。我们相信,这项研究不仅为制备支化嵌段共聚物组件提供了一种通用策略,而且还为通过非均相 RAFT 聚合合成聚合物提供了重要见解。
更新日期:2024-07-29
中文翻译:
ω,ω-大分子链转移单体介导的水性 RAFT 分散聚合:两亲性支化嵌段共聚物及其组装体的有效方法
在此,合成了含有RAFT(可逆加成-断裂链转移)基团和甲基丙烯酰基的ω,ω-大分子链转移单体(macro-CTM),并用于介导甲基丙烯酸羟丙酯(HPMA)在水中的光引发RAFT分散聚合。宏观CTM在RAFT分散聚合条件下经历自缩合乙烯基聚合(SCVP)机制,导致两亲性支化嵌段共聚物和组件的形成。与RAFT溶液聚合相比,发现RAFT分散聚合条件下促进了SCVP过程。支化嵌段共聚物组装体的形态可以通过改变单体浓度和[HPMA]/[macro-CTM]比率来控制。支化嵌段共聚物囊泡可以作为种子进行RAFT乳液聚合,并成功获得了草莓状囊泡。最后,支化嵌段共聚物的支化度可以通过使用大分子CTM和线性大分子RAFT剂或小分子CTM的二元混合物来进一步控制。我们相信,这项研究不仅为制备支化嵌段共聚物组件提供了一种通用策略,而且还为通过非均相 RAFT 聚合合成聚合物提供了重要见解。