当前位置: X-MOL 学术Int. J. Numer. Anal. Methods Geomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Meshless method for wave propagation in poroelastic transversely isotropic half‐space with the use of perfectly matched layer
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 3.4 ) Pub Date : 2024-07-30 , DOI: 10.1002/nag.3797
Kamal Shaker 1 , Morteza Eskandari‐Ghadi 1 , Soheil Mohammadi 1
Affiliation  

Numerical investigation of wave propagation in transversely isotropic poroelastic half‐space with the use of a new stretched coordinate system through the Meshless Local Petrov–Galerkin (MLPG) formulation is presented in this paper. To this end, the up formulation of Biot is adopted as the framework of the porous media. One approach to numerically solve the infinite domain problems is the use of an absorber layer in which the whole half‐space is divided into two parts, that is (i) a finite part, in which the responses are interested, and (ii) the remaining semi‐infinite part, which is replaced by a Perfectly Matched Layer (PML). The stretched coordinates in the PML are introduced in such a way that the wave propagating in it does not generate spurious reflection to the finite part. Comparing the numerical results with some existing exact solutions and evaluating the norm of error demonstrate that the response functions in the finite part are achievable as precise as desired. Some new results are also presented which show the validity of the numerical approach in poroelastic transversely isotropic domain.

中文翻译:


使用完美匹配层的多孔弹性横观各向同性半空间波传播的无网格方法



本文提出了通过无网格局部 Petrov-Galerkin (MLPG) 公式使用新的拉伸坐标系对横向各向同性多孔弹性半空间中的波传播进行数值研究。为此,你- p采用Biot公式作为多孔介质的框架。数值解决无限域问题的一种方法是使用吸收层,其中整个半空间被分为两部分,即(i)响应感兴趣的有限部分,以及(ii)剩余的半无限部分,被完美匹配层(PML)取代。 PML 中的拉伸坐标的引入方式使得在其中传播的波不会对有限部分产生寄生反射。将数值结果与一些现有的精确解进行比较并评估误差范数表明有限部分中的响应函数可以达到所需的精确度。还提出了一些新结果,表明了多孔弹性横观各向同性域中数值方法的有效性。
更新日期:2024-07-30
down
wechat
bug