当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust Hamiltonian Engineering for Interacting Qudit Systems
Physical Review X ( IF 11.6 ) Pub Date : 2024-07-31 , DOI: 10.1103/physrevx.14.031017
Hengyun Zhou 1 , Haoyang Gao 1 , Nathaniel T. Leitao 1 , Oksana Makarova 1, 1 , Iris Cong 1 , Alexander M. Douglas 1 , Leigh S. Martin 1 , Mikhail D. Lukin 1
Affiliation  

Dynamical decoupling and Hamiltonian engineering are well-established techniques that have been used to control qubit systems. However, designing the corresponding methods for qudit systems has been challenging due to the lack of a Bloch sphere representation, more complex interactions, and additional control constraints. By identifying several general structures associated with such problems, we develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems. Our formalism significantly simplifies qudit pulse-sequence design while naturally incorporating robustness conditions necessary for experimental practicality. We experimentally demonstrate these techniques in a strongly interacting, disordered ensemble of spin-1 nitrogen-vacancy centers, achieving more than an order-of-magnitude improvement in coherence time over existing pulse sequences. We further describe how our techniques enable the engineering of exotic many-body phenomena such as quantum many-body scars, and open up new opportunities for quantum metrology with enhanced sensitivities. These results enable wide-reaching new applications for dynamical decoupling and Hamiltonian engineering in many-body physics and quantum metrology.

中文翻译:


用于交互 Qudit 系统的稳健哈密顿工程



动态解耦和哈密顿工程是用于控制量子比特系统的成熟技术。然而,由于缺乏 Bloch 球表示、更复杂的交互和额外的控制约束,为 qudit 系统设计相应的方法一直具有挑战性。通过确定与此类问题相关的几种一般结构,我们为强交互 qudit 系统的稳健动态解耦和哈密顿工程开发了一种形式主义。我们的形式主义显着简化了 qudit 脉冲序列设计,同时自然地结合了实验实用性所需的稳健性条件。我们在 spin-1 氮空位中心的强相互作用、无序集合中实验证明了这些技术,与现有脉冲序列相比,相干时间提高了一个数量级以上。我们进一步描述了我们的技术如何实现奇异多体现象(如量子多体疤痕)的工程设计,并为具有增强灵敏度的量子计量学开辟了新的机会。这些结果为多体物理学和量子计量学中的动力学解耦和哈密顿工程提供了广泛的新应用。
更新日期:2024-07-31
down
wechat
bug