当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen effects on the deformation and slip localization in a single crystal austenitic stainless steel
International Journal of Plasticity ( IF 9.4 ) Pub Date : 2024-07-24 , DOI: 10.1016/j.ijplas.2024.104074
Fernando D. León-Cázares , Xiaowang Zhou , Brian Kagay , Joshua D. Sugar , Coleman Alleman , Joseph Ronevich , Chris San Marchi

Hydrogen is known to embrittle austenitic stainless steels, which are widely used in high-pressure hydrogen storage and delivery systems, but the mechanisms that lead to such material degradation are still being elucidated. The current work investigates the deformation behavior of single crystal austenitic stainless steel 316L through combined uniaxial tensile testing, characterization and atomistic simulations. Thermally precharged hydrogen is shown to increase the critical resolved shear stress (CRSS) without previously reported deviations from Schmid’s law. Molecular dynamics simulations further expose the statistical nature of the hydrogen and vacancy contributions to the CRSS in the presence of alloying. Slip distribution quantification over large in-plane distances (1 ), achieved via atomic force microscopy (AFM), highlights the role of hydrogen increasing the degree of slip localization in both single and multiple slip configurations. The most active slip bands accumulate significantly more deformation in hydrogen precharged specimens, with potential implications for damage nucleation. For tensile loading, slip localization further enhances the activity of secondary slip, increases the density of geometrically necessary dislocations and leads to a distinct lattice rotation behavior compared to hydrogen-free specimens, as evidenced by electron backscatter diffraction (EBSD) maps. The results of this study provide a more comprehensive picture of the deformation aspect of hydrogen embrittlement in austenitic stainless steels.

中文翻译:


氢对单晶奥氏体不锈钢变形和滑移局部化的影响



众所周知,氢会使奥氏体不锈钢脆化,而奥氏体不锈钢广泛用于高压氢储存和输送系统,但导致这种材料降解的机制仍在阐明中。目前的工作通过结合单轴拉伸测试、表征和原子模拟来研究单晶奥氏体不锈钢 316L 的变形行为。热预充氢被证明可以增加临界分辨剪切应力 (CRSS),而不会偏离之前报道的施密德定律。分子动力学模拟进一步揭示了合金化存在下氢和空位对 CRSS 贡献的统计性质。通过原子力显微镜(AFM)实现的大面内距离上的滑移分布量化(1)强调了氢在单滑移配置和多滑移配置中增加滑移定位程度的作用。最活跃的滑移带在预充氢的样品中积累显着更多的变形,这对损伤成核具有潜在影响。对于拉伸载荷,滑移局部化进一步增强了二次滑移的活性,增加了几何必要位错的密度,并导致与无氢样品相比明显的晶格旋转行为,如电子背散射衍射(EBSD)图所证明的那样。这项研究的结果提供了奥氏体不锈钢氢脆变形方面的更全面的信息。
更新日期:2024-07-24
down
wechat
bug