当前位置:
X-MOL 学术
›
J. Comput. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fault-tolerant quantum chemical calculations with improved machine-learning models
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2024-07-29 , DOI: 10.1002/jcc.27459 Kai Yuan 1, 2 , Shuai Zhou 3, 4 , Ning Li 5 , Tianyan Li 2 , Bowen Ding 6 , Danhuai Guo 1 , Yingjin Ma 2
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2024-07-29 , DOI: 10.1002/jcc.27459 Kai Yuan 1, 2 , Shuai Zhou 3, 4 , Ning Li 5 , Tianyan Li 2 , Bowen Ding 6 , Danhuai Guo 1 , Yingjin Ma 2
Affiliation
Easy and effective usage of computational resources is crucial for scientific calculations. Following our recent work of machine-learning (ML) assisted scheduling optimization [J. Comput. Chem. 2023, 44, 1174], we further propose (1) the improved ML models for the better predictions of computational loads, and as such, more elaborate load-balancing calculations can be expected; (2) the idea of coded computation, that is, the integration of gradient coding, in order to introduce fault tolerance during the distributed calculations; and (3) their applications together with re-normalized exciton model with time-dependent density functional theory (REM-TDDFT) for calculating the excited states. Illustrated benchmark calculations include P38 protein, and solvent model with one or several excitable centers. The results show that the improved ML-assisted coded calculations can further improve the load-balancing and cluster utilization, owing primarily profit in fault tolerance that aims at the automated quantum chemical calculations for both ground and excited states.
中文翻译:
使用改进的机器学习模型进行容错量子化学计算
简单有效地使用计算资源对于科学计算至关重要。根据我们最近的机器学习 (ML) 辅助调度优化工作 [J. Comput. Chem.2023, 44, 1174],我们进一步提出 (1) 改进的 ML 模型可以更好地预测计算负载,因此,可以预期更精细的负载均衡计算;(2) 编码计算的思想,即梯度编码的整合,以便在分布式计算过程中引入容错;(3) 它们与具有时间依赖密度泛函理论 (REM-TDDFT) 的重归一化激子模型一起用于计算激发态。图示基准计算包括 P38 蛋白和具有一个或多个可激发中心的溶剂模型。结果表明,改进的 ML 辅助编码计算可以进一步提高负载均衡和集群利用率,这主要归因于容错性,旨在实现基态和激发态的自动量子化学计算。
更新日期:2024-07-29
中文翻译:
使用改进的机器学习模型进行容错量子化学计算
简单有效地使用计算资源对于科学计算至关重要。根据我们最近的机器学习 (ML) 辅助调度优化工作 [J. Comput. Chem.2023, 44, 1174],我们进一步提出 (1) 改进的 ML 模型可以更好地预测计算负载,因此,可以预期更精细的负载均衡计算;(2) 编码计算的思想,即梯度编码的整合,以便在分布式计算过程中引入容错;(3) 它们与具有时间依赖密度泛函理论 (REM-TDDFT) 的重归一化激子模型一起用于计算激发态。图示基准计算包括 P38 蛋白和具有一个或多个可激发中心的溶剂模型。结果表明,改进的 ML 辅助编码计算可以进一步提高负载均衡和集群利用率,这主要归因于容错性,旨在实现基态和激发态的自动量子化学计算。