General Relativity and Gravitation ( IF 2.1 ) Pub Date : 2024-07-29 , DOI: 10.1007/s10714-024-03275-z Hadyan Luthfan Prihadi , Freddy Permana Zen , Donny Dwiputra , Seramika Ariwahjoedi
The butterfly velocity of four-dimensional rotating charged asymptotically AdS black hole is calculated to probe chaos using localized rotating shock waves. In this work, we obtain the angular momentum dependence of the butterfly velocity due to rotation in the shock wave probes. In general, the angular momentum \(\mathcal {L}\) of the shock waves increases the butterfly velocity. The localized shocks also generate butterfly velocities which vanish when we approach extremality, indicating no entanglement spread near extremality. One of the butterfly velocity modes is well bounded by both the speed of light and the Schwarzschild-AdS result, while the other may become superluminal. Aside from the logarithmic behavior of the scrambling time which indicates chaos, the Lyapunov exponent is also positive and bounded by \(\kappa =2\pi T_H/(1-\mu \mathcal {L})\). The Kerr–NUT–AdS and Kerr–Sen–AdS solutions and their ultraspinning versions are used as examples to attain a better understanding of the chaotic phenomena in rotating black holes, especially those with extra conserved charges.
中文翻译:
Kerr-AdS 黑洞及其超自旋版本中旋转冲击波引起的局部混沌
计算四维旋转带电渐近 AdS 黑洞的蝶形速度,以利用局域旋转冲击波探测混沌。在这项工作中,我们获得了由于冲击波探头中的旋转而导致的蝴蝶速度的角动量依赖性。一般来说,冲击波的角动量\(\mathcal {L}\)会增加蝴蝶的速度。局部激波还会产生蝶形速度,当我们接近极值时,蝶形速度就会消失,这表明在极值附近没有纠缠扩散。其中一种蝶形速度模式受到光速和 Schwarzschild-AdS 结果的良好限制,而另一种可能会变成超光速。除了表明混沌的加扰时间的对数行为之外,Lyapunov 指数也是正的,并且以\(\kappa =2\pi T_H/(1-\mu \mathcal {L})\)为界。以 Kerr-NUT-AdS 和 Kerr-Sen-AdS 解决方案及其超旋转版本为例,以更好地理解旋转黑洞中的混沌现象,特别是那些具有额外守恒电荷的黑洞。