当前位置:
X-MOL 学术
›
Resuscitation
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: In-hospital setting
Resuscitation ( IF 6.5 ) Pub Date : 2024-07-17 , DOI: 10.1016/j.resuscitation.2024.110325 Sejoong Ahn 1 , Sumin Jung 2 , Jong-Hak Park 1 , Hanjin Cho 1 , Sungwoo Moon 1 , Sukyo Lee 1
Resuscitation ( IF 6.5 ) Pub Date : 2024-07-17 , DOI: 10.1016/j.resuscitation.2024.110325 Sejoong Ahn 1 , Sumin Jung 2 , Jong-Hak Park 1 , Hanjin Cho 1 , Sungwoo Moon 1 , Sukyo Lee 1
Affiliation
This study aimed to develop an artificial intelligence (AI) model capable of predicting shockable rhythms from electrocardiograms (ECGs) with compression artifacts using real-world data from emergency department (ED) settings. Additionally, we aimed to explore the black box nature of AI models, providing explainability.
中文翻译:
人工智能预测心肺复苏期间的可电击心律:院内环境
本研究旨在开发一种人工智能 (AI) 模型,该模型能够使用来自急诊科 (ED) 设置的真实数据从带有压缩伪影的心电图 (ECG) 中预测可电击心律。此外,我们旨在探索 AI 模型的黑盒性质,提供可解释性。
更新日期:2024-07-17
中文翻译:
人工智能预测心肺复苏期间的可电击心律:院内环境
本研究旨在开发一种人工智能 (AI) 模型,该模型能够使用来自急诊科 (ED) 设置的真实数据从带有压缩伪影的心电图 (ECG) 中预测可电击心律。此外,我们旨在探索 AI 模型的黑盒性质,提供可解释性。