当前位置:
X-MOL 学术
›
Prog. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dynamics of ring-containing polymers: Macromolecular rotaxanes, polyrotaxanes and slide-ring networks
Progress in Polymer Science ( IF 26.0 ) Pub Date : 2024-07-14 , DOI: 10.1016/j.progpolymsci.2024.101854 Sina Ghiassinejad , Mostafa Ahmadi , Evelyne van Ruymbeke , Charles-André Fustin
Progress in Polymer Science ( IF 26.0 ) Pub Date : 2024-07-14 , DOI: 10.1016/j.progpolymsci.2024.101854 Sina Ghiassinejad , Mostafa Ahmadi , Evelyne van Ruymbeke , Charles-André Fustin
A mechanical bond serves as a distinctive approach for harnessing the most beneficial features of both covalent and supramolecular chemistries, offering stability and structural adaptability owing to its unique dynamic nature. Molecules formed by mechanical bonding, known as mechanically interlocked molecules (MIMs) including catenanes, rotaxanes, and knots have opened new possibilities. Notably, the introduction of mechanically interlocked structures into polymers has led to the emergence of novel polymeric materials referred to as mechanically interlocked polymers (MIPs), such as polyrotaxanes and polycatenanes. The interlocked nature of these architectures can lead to particular conformational freedom and high mobility of their components, resulting in exceptional properties, such as ultra-stretchability, toughness, and immediate recoverability. These properties have found potential applications in diverse fields, including the development of tough hydrogels, scratch-resistant coatings, smart actuators, and batteries. Recent years have witnessed a surge in the synthesis and investigation of a diverse array of rotaxane-based MIPs, an essential class that has enabled researchers to begin grasping the impact of incorporating mechanical bonds within polymer structures, and of their mobility, on material properties. In this review, an overview of the dynamics of ring-containing polymers is presented. The review encompasses macromolecular rotaxanes, polyrotaxanes, and slide-ring networks, including the role of ring mobility in shaping the dynamics and properties of rotaxane polymers.
中文翻译:
含环聚合物的动力学:高分子轮烷、聚轮烷和滑环网络
机械键是一种利用共价和超分子化学最有益特征的独特方法,由于其独特的动态性质,提供稳定性和结构适应性。通过机械键合形成的分子,称为机械联锁分子(MIM),包括索烷、轮烷和结,开辟了新的可能性。值得注意的是,将机械互锁结构引入聚合物中导致了被称为机械互锁聚合物(MIP)的新型聚合物材料的出现,例如聚轮烷和聚链烷。这些结构的互锁性质可以导致其组分具有特定的构象自由度和高流动性,从而产生卓越的性能,例如超拉伸性、韧性和立即恢复性。这些特性在不同领域都有潜在的应用,包括开发坚韧的水凝胶、防刮涂层、智能执行器和电池。近年来,各种基于轮烷的 MIP 的合成和研究激增,这是一个重要的类别,使研究人员能够开始掌握在聚合物结构中加入机械键及其迁移率对材料性能的影响。在这篇综述中,概述了含环聚合物的动力学。该综述涵盖大分子轮烷、聚轮烷和滑环网络,包括环迁移率在塑造轮烷聚合物的动力学和性能中的作用。
更新日期:2024-07-14
中文翻译:
含环聚合物的动力学:高分子轮烷、聚轮烷和滑环网络
机械键是一种利用共价和超分子化学最有益特征的独特方法,由于其独特的动态性质,提供稳定性和结构适应性。通过机械键合形成的分子,称为机械联锁分子(MIM),包括索烷、轮烷和结,开辟了新的可能性。值得注意的是,将机械互锁结构引入聚合物中导致了被称为机械互锁聚合物(MIP)的新型聚合物材料的出现,例如聚轮烷和聚链烷。这些结构的互锁性质可以导致其组分具有特定的构象自由度和高流动性,从而产生卓越的性能,例如超拉伸性、韧性和立即恢复性。这些特性在不同领域都有潜在的应用,包括开发坚韧的水凝胶、防刮涂层、智能执行器和电池。近年来,各种基于轮烷的 MIP 的合成和研究激增,这是一个重要的类别,使研究人员能够开始掌握在聚合物结构中加入机械键及其迁移率对材料性能的影响。在这篇综述中,概述了含环聚合物的动力学。该综述涵盖大分子轮烷、聚轮烷和滑环网络,包括环迁移率在塑造轮烷聚合物的动力学和性能中的作用。