当前位置:
X-MOL 学术
›
Med. Image Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improving lesion volume measurements on digital mammograms
Medical Image Analysis ( IF 10.7 ) Pub Date : 2024-07-11 , DOI: 10.1016/j.media.2024.103269 Nikita Moriakov 1 , Jim Peters 2 , Ritse Mann 3 , Nico Karssemeijer 3 , Jos van Dijck 2 , Mireille Broeders 2 , Jonas Teuwen 4
Medical Image Analysis ( IF 10.7 ) Pub Date : 2024-07-11 , DOI: 10.1016/j.media.2024.103269 Nikita Moriakov 1 , Jim Peters 2 , Ritse Mann 3 , Nico Karssemeijer 3 , Jos van Dijck 2 , Mireille Broeders 2 , Jonas Teuwen 4
Affiliation
Lesion volume is an important predictor for prognosis in breast cancer. However, it is currently impossible to compute lesion volumes accurately from digital mammography data, which is the most popular and readily available imaging modality for breast cancer. We make a step towards a more accurate lesion volume measurement on digital mammograms by developing a model that allows to estimate lesion volumes on processed mammogram. Processed mammograms are the images routinely used by radiologists in clinical practice as well as in breast cancer screening and are available in medical centers. Processed mammograms are obtained from raw mammograms, which are the X-ray data coming directly from the scanner, by applying certain vendor-specific non-linear transformations. At the core of our volume estimation method is a physics-based algorithm for measuring lesion volumes on raw mammograms. We subsequently extend this algorithm to processed mammograms via a deep learning image-to-image translation model that produces synthetic raw mammograms from processed mammograms in a multi-vendor setting. We assess the reliability and validity of our method using a dataset of 1778 mammograms with an annotated mass. Firstly, we investigate the correlations between lesion volumes computed from mediolateral oblique and craniocaudal views, with a resulting Pearson correlation of 0.93 [95% confidence interval (CI) 0.92 – 0.93]. Secondly, we compare the resulting lesion volumes from true and synthetic raw data, with a resulting Pearson correlation of 0.998 [95%CI 0.998 – 0.998] . Finally, for a subset of 100 mammograms with a malignant mass and concurrent MRI examination available, we analyze the agreement between lesion volume on mammography and MRI, resulting in an intraclass correlation coefficient of 0.81 [95%CI 0.73 – 0.87] for consistency and 0.78 [95%CI 0.66 – 0.86] for absolute agreement. In conclusion, we developed an algorithm to measure mammographic lesion volume that reached excellent reliability and good validity, when using MRI as ground truth. The algorithm may play a role in lesion characterization and breast cancer prognostication on mammograms.
中文翻译:
改进数字乳房 X 光检查的病变体积测量
病灶体积是乳腺癌预后的重要预测指标。然而,目前不可能根据数字乳房X线摄影数据准确计算病变体积,而数字乳房X线摄影是乳腺癌最流行且最容易获得的成像方式。我们通过开发一种模型,可以在处理后的乳房X光照片上估计病变体积,从而朝着更准确地测量数字乳房X光照片的病变体积迈出了一步。经过处理的乳房X光照片是放射科医生在临床实践以及乳腺癌筛查中常规使用的图像,并且可以在医疗中心获得。处理后的乳房 X 光照片是通过应用某些供应商特定的非线性变换从原始乳房 X 光照片(直接来自扫描仪的 X 射线数据)获得的。我们体积估计方法的核心是基于物理的算法,用于测量原始乳房 X 光照片上的病变体积。随后,我们通过深度学习图像到图像转换模型将该算法扩展到处理后的乳房 X 光照片,该模型在多供应商设置中从处理后的乳房 X 光照片生成合成原始乳房 X 光照片。我们使用 1778 个带有注释质量的乳房 X 光照片数据集来评估我们方法的可靠性和有效性。首先,我们研究了从内侧斜视图和头尾视图计算出的病变体积之间的相关性,得出的 Pearson 相关性为 0.93 [95% 置信区间 (CI) 0.92 – 0.93]。其次,我们比较真实和合成原始数据产生的病变体积,所得皮尔逊相关性为 0.998 [95%CI 0.998 – 0.998]。 最后,对于具有恶性肿块和并发 MRI 检查的 100 张乳房 X 光检查子集,我们分析了乳房 X 光检查和 MRI 上病灶体积之间的一致性,得出一致性的组内相关系数为 0.81 [95% CI 0.73 – 0.87],组内相关系数为 0.78 [95%CI 0.66 – 0.86] 绝对一致。总之,我们开发了一种测量乳房 X 线摄影病变体积的算法,当使用 MRI 作为基本事实时,该算法达到了出色的可靠性和良好的有效性。该算法可能在乳房 X 光检查的病变特征和乳腺癌预测中发挥作用。
更新日期:2024-07-11
中文翻译:
改进数字乳房 X 光检查的病变体积测量
病灶体积是乳腺癌预后的重要预测指标。然而,目前不可能根据数字乳房X线摄影数据准确计算病变体积,而数字乳房X线摄影是乳腺癌最流行且最容易获得的成像方式。我们通过开发一种模型,可以在处理后的乳房X光照片上估计病变体积,从而朝着更准确地测量数字乳房X光照片的病变体积迈出了一步。经过处理的乳房X光照片是放射科医生在临床实践以及乳腺癌筛查中常规使用的图像,并且可以在医疗中心获得。处理后的乳房 X 光照片是通过应用某些供应商特定的非线性变换从原始乳房 X 光照片(直接来自扫描仪的 X 射线数据)获得的。我们体积估计方法的核心是基于物理的算法,用于测量原始乳房 X 光照片上的病变体积。随后,我们通过深度学习图像到图像转换模型将该算法扩展到处理后的乳房 X 光照片,该模型在多供应商设置中从处理后的乳房 X 光照片生成合成原始乳房 X 光照片。我们使用 1778 个带有注释质量的乳房 X 光照片数据集来评估我们方法的可靠性和有效性。首先,我们研究了从内侧斜视图和头尾视图计算出的病变体积之间的相关性,得出的 Pearson 相关性为 0.93 [95% 置信区间 (CI) 0.92 – 0.93]。其次,我们比较真实和合成原始数据产生的病变体积,所得皮尔逊相关性为 0.998 [95%CI 0.998 – 0.998]。 最后,对于具有恶性肿块和并发 MRI 检查的 100 张乳房 X 光检查子集,我们分析了乳房 X 光检查和 MRI 上病灶体积之间的一致性,得出一致性的组内相关系数为 0.81 [95% CI 0.73 – 0.87],组内相关系数为 0.78 [95%CI 0.66 – 0.86] 绝对一致。总之,我们开发了一种测量乳房 X 线摄影病变体积的算法,当使用 MRI 作为基本事实时,该算法达到了出色的可靠性和良好的有效性。该算法可能在乳房 X 光检查的病变特征和乳腺癌预测中发挥作用。