当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controlled epitaxial growth of strain-induced large-area bilayer MoS2 by chemical vapor deposition based on two-stage strategy
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-09 , DOI: 10.1016/j.mtphys.2024.101501 Kaiyi Wang , Ruoyan Xu , Fenglin Gao , Shiyao Xu , Shijie Hao , Chen Fan , Yuan Zhang , Yuehua Wei , Xiongxiong Xue , Guolin Hao
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-07-09 , DOI: 10.1016/j.mtphys.2024.101501 Kaiyi Wang , Ruoyan Xu , Fenglin Gao , Shiyao Xu , Shijie Hao , Chen Fan , Yuan Zhang , Yuehua Wei , Xiongxiong Xue , Guolin Hao
Two-dimensional (2D) bilayer transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their promising applications in the fields of electronics, optoelectronics, valleytronics and nonlinear optics. However, the precise synthesis of large-area, high-yield and uniform bilayer MoS semiconductors remains a significant challenge. Herein, we have developed one two-stage chemical vapor deposition strategy based on strain engineering, enabling the controlled preparation of large-area (4 × 6 cm) bilayer MoS nanostructures. Systematic characterizations indicate that compressive strain was introduced during the growth of first layer MoS, which effectively induces the synthesis of the second layer MoS. First-principles calculations based on density functional theory further reveal the mechanism of strain induced controllable growth of bilayer MoS. Field-effect transistors based on AA and AB stacking bilayer MoS have been fabricated exhibiting excellent electronic properties. Our work provides a new pathway for the precise preparation of bilayer TMDCs nanostructures, offering experimental support for their application in the field of electronic and optoelectronic devices.
中文翻译:
基于两阶段策略的化学气相沉积控制应变诱导大面积双层MoS2外延生长
二维(2D)双层过渡金属二硫化物(TMDC)因其在电子、光电子、谷电子和非线性光学领域的广阔应用而引起了广泛关注。然而,大面积、高产率和均匀的双层MoS半导体的精确合成仍然是一个重大挑战。在此,我们开发了一种基于应变工程的两阶段化学气相沉积策略,能够控制制备大面积(4 × 6 cm)双层MoS纳米结构。系统表征表明,在第一层MoS的生长过程中引入了压缩应变,有效地诱导了第二层MoS的合成。基于密度泛函理论的第一性原理计算进一步揭示了应变诱导双层MoS2可控生长的机制。基于 AA 和 AB 堆叠双层 MoS2 的场效应晶体管已被制造出,具有优异的电子性能。我们的工作为双层TMDCs纳米结构的精确制备提供了新途径,为其在电子和光电器件领域的应用提供了实验支持。
更新日期:2024-07-09
中文翻译:
基于两阶段策略的化学气相沉积控制应变诱导大面积双层MoS2外延生长
二维(2D)双层过渡金属二硫化物(TMDC)因其在电子、光电子、谷电子和非线性光学领域的广阔应用而引起了广泛关注。然而,大面积、高产率和均匀的双层MoS半导体的精确合成仍然是一个重大挑战。在此,我们开发了一种基于应变工程的两阶段化学气相沉积策略,能够控制制备大面积(4 × 6 cm)双层MoS纳米结构。系统表征表明,在第一层MoS的生长过程中引入了压缩应变,有效地诱导了第二层MoS的合成。基于密度泛函理论的第一性原理计算进一步揭示了应变诱导双层MoS2可控生长的机制。基于 AA 和 AB 堆叠双层 MoS2 的场效应晶体管已被制造出,具有优异的电子性能。我们的工作为双层TMDCs纳米结构的精确制备提供了新途径,为其在电子和光电器件领域的应用提供了实验支持。