当前位置: X-MOL 学术Soil Tillage Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Five years of conservation tillage and weed management in a rice-chickpea rotation of northern Gangetic Plains of India: Weed growth, yield benefits and economic profitability
Soil and Tillage Research ( IF 6.1 ) Pub Date : 2024-07-14 , DOI: 10.1016/j.still.2024.106226
C.P. Nath , Narendra Kumar , K.K. Hazra , Asik Dutta , C.S. Praharaj , Raghavendra Singh , S.S. Singh , R.P. Dubey , Suman Sen , G.P. Dixit , Deepak Kumar

Cropping system diversification of cereal-cereal systems with alternative systems preferably with pulses/legumes is demand of time across the globe for sustenance of natural resources and climate resilience. Rice-chickpea has been advocated as a futuristic cropping system in rice ecologies of South Asia for diversification of dominating rice-wheat system. However, the long-term sustainability of this system with respect to weed severity/growth, crop/system productivity, profitability, and yield stability under variable tillage, crop residues, and weed management practices has not been studied elaborately. Hence, present study was undertaken for five consecutive years in split-plot design with four tillage and residue management practices in main plot (conventional and zero tillage with and without residues), and three weed control practices (pre + post emergence herbicides and manual weeding) in sub-plot. Conservation tillage system comprising zero-tilled (ZT) direct seeded rice (ZTDSR) - ZT chickpea with rice residue retention (ZTDSR-ZTC+RR) led to the lower weed density in chickpea (by 10 %) and system (by 7 %) than conventional-tilled (CT) puddled transplanted rice - CT chickpea without residues (PTR-CTC-R; farmer practice). Among weed management practices, pendimethalin 1 kg a.i. ha – metsulfuron-methyl + chlorimuron ethyl (ready-mix) 4 g a.i. ha in rice and oxyfluorfen 150 g a.i. ha – propaquizafop 100 g a.i. ha in chickpea decreased the weed density in system by 14–22 % (p < 0.05) than pendimethalin + one hand weeding. The best weed management practice (pendimethalin – metsulfuron-methyl + chlorimuron ethyl) had significantly total weed density rice (by 7 %) and system (by 10 %) than current recommendation of the Indo-Gangetic Plains region (pendimethalin - bispyribac-sodium). It suggested that rotation of bispyribac-sodium with metsulfuron-methyl+chlorimuron ethyl (mixture herbicide) could reduce weed density and increase yield over time. Mean of five years indicated a non-significant yield difference among conservation and conventional tillage systems in rice. However, conservation tillage practice (ZTDSR-ZTC+RR) had 10 % higher chickpea yield and 4 % higher system yield (five years mean) over the PTR-CTC-R (p < 0.05). Further, conservation tillage comprising ZT in both crops in system with added residues (ZTDSR-ZTC+RR) resulted in an economic benefit of INR 22,000 than the conventional tillage in both crops without residues (PTR-CTC-R). Moreover, five years sustainable yield index was 16 % higher in ZTDSR-ZTC+RR system than conventional-tilled rice-chickpea system. Thus, conservation tillage with suitable pre- + post- emergence herbicides such as pendimethalin – metsulfuron-methyl + chlorimuron ethyl in rice and oxyfluorfen – propaquizafop in chickpea can reduce the weed density and enhance the crop and system productivity over time than conventional tillage. This system can also sustain the yields of component crops and system in long-run with higher yield stability over conventional tillage without residues. This system can be adopted in the cereal-cereal based cropping system of rice ecologies to diversify the system and to reverse the weed infestation and yield decline.

中文翻译:


印度恒河平原北部稻鹰嘴豆轮作五年的保护性耕作和杂草管理:杂草生长、产量效益和经济效益



谷物-谷物系统的种植系统多样化,以及替代系统(最好是豆类/豆类)是全球维持自然资源和气候适应能力的时间需求。水稻-鹰嘴豆被认为是南亚水稻生态中的一种未来种植系统,以实现主导稻麦系统的多样化。然而,该系统在杂草严重程度/生长、作物/系统生产力、盈利能力和可变耕作、作物残留和杂草管理实践下的产量稳定性方面的长期可持续性尚未得到详细研究。因此,本研究连续五年采用裂区设计进行,主地块有四种耕作和残留管理措施(常规耕作和零耕,有残留和无残留),以及三种杂草控制措施(出苗前+出苗后除草剂和人工除草) )在子图中。由零耕 (ZT) 直播稻 (ZTDSR) 组成的保护性耕作系统 - 保留稻渣的 ZT 鹰嘴豆 (ZTDSR-ZTC+RR) 导致鹰嘴豆中的杂草密度降低(降低 10%)和系统中的杂草密度(降低 7%)比传统耕作 (CT) 泥浆移栽水稻 - 无残留 CT 鹰嘴豆(PTR-CTC-R;农民实践)。在杂草管理实践中,稻米中使用二甲戊乐灵 1 kg ai ha – 甲磺隆 + 氯嘧磺隆(预混合) 4 g ai ha,以及鹰嘴豆中使用乙氧氟草醚 150 g ai ha – 丙螨灵 100 g ai ha,系统中的杂草密度降低了 14比二甲戊灵 + 一只手除草 –22% (p < 0.05)。 最佳杂草管理实践(二甲戊灵 – 甲磺隆 + 氯嘧磺隆)的水稻总杂草密度(提高 7%)和系统(提高 10%)比目前印度恒河平原地区推荐的建议(二甲戊灵 – 双草醚钠)显着提高。这表明,随着时间的推移,双草醚与甲磺隆+氯嘧磺隆(混合除草剂)轮作可以降低杂草密度并提高产量。五年平均值表明,水稻保护耕作系统和传统耕作系统之间的产量差异不显着。然而,与 PTR-CTC-R 相比,保护性耕作实践 (ZTDSR-ZTC+RR) 的鹰嘴豆产量高出 10%,系统产量高出 4%(五年平均值)(p < 0.05)。此外,在添加残留物的系统中,在两种作物中包含 ZT 的保护性耕作(ZTDSR-ZTC+RR)比在两种作物中不添加残留物的常规耕作(PTR-CTC-R)产生了 22,000 印度卢比的经济效益。此外,ZTDSR-ZTC+RR系统的五年可持续产量指数比常规耕作的水稻-鹰嘴豆系统高16%。因此,与传统耕作相比,使用合适的出苗前和出苗后除草剂(例如水稻中的二甲戊灵 - 甲磺隆 + 氯嘧磺隆和鹰嘴豆中的乙氧氟草醚 - 丙吡草酯)进行保护性耕作可以降低杂草密度,并随着时间的推移提高作物和系统的生产力。该系统还可以长期维持组成作物和系统的产量,与无残留的传统耕作相比,产量稳定性更高。该系统可应用于以谷类为主的水稻生态系统,使系统多样化,扭转杂草侵扰和产量下降的局面。
更新日期:2024-07-14
down
wechat
bug